On the role of abnormal minimizers in sub-riemannian geometry

B. Bonnard; E. Trélat

Annales de la Faculté des sciences de Toulouse : Mathématiques (2001)

  • Volume: 10, Issue: 3, page 405-491
  • ISSN: 0240-2963

How to cite

top

Bonnard, B., and Trélat, E.. "On the role of abnormal minimizers in sub-riemannian geometry." Annales de la Faculté des sciences de Toulouse : Mathématiques 10.3 (2001): 405-491. <http://eudml.org/doc/73553>.

@article{Bonnard2001,
author = {Bonnard, B., Trélat, E.},
journal = {Annales de la Faculté des sciences de Toulouse : Mathématiques},
keywords = {sub-Riemannian manifolds; optimal control problem; geodesics; Martinet geometry},
language = {eng},
number = {3},
pages = {405-491},
publisher = {UNIVERSITE PAUL SABATIER},
title = {On the role of abnormal minimizers in sub-riemannian geometry},
url = {http://eudml.org/doc/73553},
volume = {10},
year = {2001},
}

TY - JOUR
AU - Bonnard, B.
AU - Trélat, E.
TI - On the role of abnormal minimizers in sub-riemannian geometry
JO - Annales de la Faculté des sciences de Toulouse : Mathématiques
PY - 2001
PB - UNIVERSITE PAUL SABATIER
VL - 10
IS - 3
SP - 405
EP - 491
LA - eng
KW - sub-Riemannian manifolds; optimal control problem; geodesics; Martinet geometry
UR - http://eudml.org/doc/73553
ER -

References

top
  1. [1] Agrachev ( A.). - Compactness for sub-Riemannian length minimizers and subanalyticity, Rend. Semin. Mat. Torino, Vol. 56, 1999. Zbl1039.53038MR1845741
  2. [2] Agrachev ( A.), Bonnard ( B.), Chyba ( M.), Kupka ( I.). - Sub-Riemannian sphere in the Martinet flat case, ESAIM/COCV, Vol. 2, 377-448, 1997. Zbl0902.53033MR1483765
  3. [3] Agrachev ( A.), El Alaoui, Gauthier ( J.P.). - Sub-Riemannian metrics on R3, Canadian Math. Cont. Proc., Vol. 25, 29-76, 1998. Zbl0962.53022MR1648710
  4. [4] Agrachev ( A.), El Alaoui, Gauthier ( J.P.), Kupka ( I.). - Generic singularities of sub-Riemannian on IR,3, C.R.A.S., Paris, 377-384, 1996. Zbl0843.53025MR1378516
  5. [5] Agrachev ( A.), Sarychev ( A.). - On abnormal extremals for Lagrange variational problems, J. Math. Systems, Estimation and Control, Vol. 8, No. 1, 1998, 87-118. Zbl0826.49012MR1486492
  6. [6] Agrachev ( A.), Sarychev ( A.). - Strong minimality of abnormal geodesics for 2-distributions in SR-geometry, J. of Dynamical and Control Systems, Vol. 1, No. 2, 139-176, 1995. Zbl0951.53029MR1333769
  7. [7] Bellaïche ( A.), Risler ( J.J.) (Editors). - Sub-Riemannian geometry, Birkhäuser, 1996, Progress in Mathematics, Vol. 144. Zbl0848.00020MR1421821
  8. [8] Bliss ( G.A.). - , Lectures on the calculus of variations, University of Chicago Press, Chicago, 1946. Zbl0063.00459MR17881
  9. [9] Bonnard ( B.). - Feedback equivalence for nonlinear systems and the time optimal control problem, SIAM J. on control and optimization, 29, 1300-1321, 1991. Zbl0744.93033MR1132184
  10. [10] Bonnard ( B.), Chyba ( M.). — Méthodes géométriques et analytiques pour étudier l'application exponentielle, la sphère et le front d'onde en géométrie SR dans le cas Martinet, ESAIM/COCV, Vol. 4, 245-334, 1999. Zbl0929.53016MR1696290
  11. [11] Bonnard ( B.), Heutte ( H.). - La propriété de stricte anormalité est générique, Preprint Labo. de Topologie Dijon, 1995. 
  12. [12] Bonnard ( B.), Kupka ( I.). - Théorie des singularités et optimalité des trajectoires singulières dans le problème du temps minimal, Forum Math.5, 111-159, 1991. Zbl0779.49025MR1205250
  13. [13] Bonnard ( B.), Kupka ( I.). - Generic properties of singular trajectories, Annales de l'IHP, Analyse non linéaire, Vol. 14, No. 2, 167-186, 1997. Zbl0907.93020MR1441391
  14. [14] Bonnard ( B.), Launay ( G.), Trélat ( E.). - The transcendence we need to compute the sphere and wave front in Martinet SR-geometry, Contemporary Mathematics and its Applications, Vol. 64, VINITI, Moscow, 1999, pp 82-117. English version in Journal of Mathematical Sciences (Kluwer), Vol. 103 (6), 2001, pp 688-708. Zbl0999.58007MR1871126
  15. [15] Bruno ( A.D.). - Local methods in nonlinear differential equations, Springer Verlag, 1989. Zbl0674.34002MR993771
  16. [16] Chaperon ( M.). - Géométrie différentielle et singularités des systèmes dynamiques, Astérisque138-139, SMF, 1986. Zbl0601.58002MR858911
  17. [17] Chyba ( M.). — Le cas Martinet en géométrie sous-Riemannienne, Thèse de l'Université de Bourgogne, 1997. 
  18. [18] Davis ( H.). — Introduction to nonlinear differential and integral equations, Dover, 1962. Zbl0106.28904MR181773
  19. [19] Van Den Dries ( L.), Macintyre ( A.), Marker ( D.). — The elementary theory of restricted analytic fields with exponentiation, Annals of Mathematics, 140, 183-205, 1994. Zbl0837.12006MR1289495
  20. [20] Van Den Dries ( L.), Miller ( C.). - Geometric categories and o-minimal structures, Duke Math. Journal, Vol. 84, No. 2, 1996. Zbl0889.03025MR1404337
  21. [21] Heutte ( H.). - Propriétés génériques des extrémales singulières dans le cas multi-entrée, Preprint Labo. de Topologie Dijon, 1995. 
  22. [22] IL'YASHENKO ( Yu.S.). — Finiteness theorems for limit cycles, Translations of Mathematical Monographs, Vol. 94, 1991. Zbl0743.34036MR1133882
  23. [23] Krener ( A.J.). - The higher order maximal principle and its applications to singular extremals, SIAM J. on Control and Opt., Vol. 15, 256-293, 1977. Zbl0354.49008MR433288
  24. [24] Kupka ( I.). — Abnormal extremals, Preprint, 1992. 
  25. [25] Kupka ( I.). — Géométrie sous-Riemannienne, Séminaire Bourbaki, 1996. Zbl0893.53013MR1472545
  26. [26] Lawden ( D.F.). - , Elliptic functions and applications, Springer Verlag, 1980. Zbl0689.33001MR1007595
  27. [27] Lee ( E.B.), Markus ( L.). - Foundations of optimal control theory, John Wiley, New York, 1967. Zbl0159.13201MR220537
  28. [28] Lion ( J.M.), Rolin ( J.P.). — Théorèmes de préparation pour les fonctions logarithmico-exponentielles, Annales de l'Institut Fourier, Tome 47, Fasc. 3, 859-884, 1997. Zbl0873.32004MR1465789
  29. [29] Liu ( W.S.), Sussmann ( H.J.). - Shortest paths for sub-Riemannian metrics of rank two distributions, Memoirs AMS, No. 564, Vol. 118, 1995. Zbl0843.53038MR1303093
  30. [30] Lojasiewicz ( S.), Sussmann ( H.J.). - Some examples of reachable sets and optimal cost functions that fail to be subanalytic, SIAM J. on Control and Opt., Vol. 23, No. 4, 584-598, 1985. Zbl0569.49029MR791889
  31. [31] Love ( A.E.H.). - A treatise of the mathematica theory of elasticity, Dover, 1944. Zbl0063.03651MR10851
  32. [32] Mischenko ( A.S.) and al. - Lagrangian manifolds and the Maslov operator, Springer Verlag, New York, 1980. 
  33. [33] Montgomery ( R.). - Abnormal minimizers, SIAM J. on Control and Opt., Vol. 32, No. 6, 1605-1620, 1997. Zbl0816.49019MR1297101
  34. [34] Mourtada ( A.), Moussu ( R.). - Applications de Dulac et applications pfaffiennes, Bulletin SMF, 125, 1-13, 1997. Zbl0884.58004MR1459296
  35. [35] Moussu ( R.), Roche ( A.). - Théorie de Khovanski et problème de Dulac, Inv. Math., 105, 431-441, 1991. Zbl0769.58050MR1115550
  36. [36] Pelletier ( M.). - Communication personnelle. 
  37. [37] Pontriaguine ( L.) et al. - Théorie mathématique des processus optimaux, Eds Mir, Moscou, 1974. Zbl0289.49002MR358482
  38. [38] Roussarie ( R.). - Bifurcations of planar vector fields and Hilbert's 16th problem, Birkhäuser, Berlin, 1998. Zbl0898.58039
  39. [39] Sachkov ( Y.L.). - Symmetries of flat rank two distributions and sub-Riemannian structures, Preprint Labo. de Topologie Dijon, 1998. MR2022707
  40. [40] Trélat ( E.). — Some properties of the value function and its level sets for affine control systems with quadratic cost, Journal of Dynamical and Control Systems, Vol. 6, No. 4, Oct. 2000, 511-541. Zbl0964.49021MR1778212
  41. [41] Trélat ( E.). - Etude asymptotique et transcendance de la fonction valeur en contrôle optimal ; catégorie log-exp dans le cas sous-Riemannien de Martinet. Phd Thesis, Université de Bourgogne, Dijon, 2000. 
  42. [42] Trélat ( E.). - Asymptotics of accessibility sets along an abnormal trajectory, ESAIM/COCV, Vol. 6, 387-414, 2001. Zbl0996.93009MR1836049
  43. [43] Trélat ( E.). - Non subanalyticity of sub-Riemannian Martinet spheres, CRAS, t. 332, Série I, 527-532, 2001. Zbl0999.53026MR1834063
  44. [44] Zelenko ( I.), Zhitomirski ( M.). - Rigid paths of generic 2-distributions on 3-manifolds, Duke Math. Journal, Vol. 79, No. 2, 281-307, 1995. Zbl0867.57022MR1344763
  45. [45] Zhitomirski ( M.). — Typical singularities of differential 1-forms and pfaffian equations, Trans. of Math. Monographs, Vol. 113, AMS, 1992. Zbl0771.58001MR1195792

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.