Une approche géométrique du contrôle optimal de l'arc atmosphérique de la navette spatiale

Bernard Bonnard; Emmanuel Trélat

ESAIM: Control, Optimisation and Calculus of Variations (2010)

  • Volume: 7, page 179-222
  • ISSN: 1292-8119

Abstract

top
The aim of this article is to make some geometric remarks and some preliminary calculations in order to construct the optimal atmospheric arc of a spatial shuttle (problem of reentry on Earth or Mars Sample Return project). The system describing the trajectories is in dimension 6, the control is the bank angle and the cost is the total thermal flux. Moreover there are state constraints (thermal flux, normal acceleration and dynamic pressure). Our study is mainly geometric and is founded on the evaluation of the accessibility set taking into account the state constraints. We make an analysis of the extremals of the Minimum Principle in the non-constrained case, and give a version of the Minimum Principle adapted to deal with the state constraints.

How to cite

top

Bonnard, Bernard, and Trélat, Emmanuel. "Une approche géométrique du contrôle optimal de l'arc atmosphérique de la navette spatiale." ESAIM: Control, Optimisation and Calculus of Variations 7 (2010): 179-222. <http://eudml.org/doc/90618>.

@article{Bonnard2010,
abstract = { The aim of this article is to make some geometric remarks and some preliminary calculations in order to construct the optimal atmospheric arc of a spatial shuttle (problem of reentry on Earth or Mars Sample Return project). The system describing the trajectories is in dimension 6, the control is the bank angle and the cost is the total thermal flux. Moreover there are state constraints (thermal flux, normal acceleration and dynamic pressure). Our study is mainly geometric and is founded on the evaluation of the accessibility set taking into account the state constraints. We make an analysis of the extremals of the Minimum Principle in the non-constrained case, and give a version of the Minimum Principle adapted to deal with the state constraints. },
author = {Bonnard, Bernard, Trélat, Emmanuel},
journal = {ESAIM: Control, Optimisation and Calculus of Variations},
keywords = {Contrôle optimal avec contraintes sur l'état; principes du minimum; mécanique céleste; arc atmosphérique.; optimal control with state constraints; minimum principle; celestial mechanics; atmospheric arc},
language = {eng},
month = {3},
pages = {179-222},
publisher = {EDP Sciences},
title = {Une approche géométrique du contrôle optimal de l'arc atmosphérique de la navette spatiale},
url = {http://eudml.org/doc/90618},
volume = {7},
year = {2010},
}

TY - JOUR
AU - Bonnard, Bernard
AU - Trélat, Emmanuel
TI - Une approche géométrique du contrôle optimal de l'arc atmosphérique de la navette spatiale
JO - ESAIM: Control, Optimisation and Calculus of Variations
DA - 2010/3//
PB - EDP Sciences
VL - 7
SP - 179
EP - 222
AB - The aim of this article is to make some geometric remarks and some preliminary calculations in order to construct the optimal atmospheric arc of a spatial shuttle (problem of reentry on Earth or Mars Sample Return project). The system describing the trajectories is in dimension 6, the control is the bank angle and the cost is the total thermal flux. Moreover there are state constraints (thermal flux, normal acceleration and dynamic pressure). Our study is mainly geometric and is founded on the evaluation of the accessibility set taking into account the state constraints. We make an analysis of the extremals of the Minimum Principle in the non-constrained case, and give a version of the Minimum Principle adapted to deal with the state constraints.
LA - eng
KW - Contrôle optimal avec contraintes sur l'état; principes du minimum; mécanique céleste; arc atmosphérique.; optimal control with state constraints; minimum principle; celestial mechanics; atmospheric arc
UR - http://eudml.org/doc/90618
ER -

References

top
  1. H. Baumann et H.J. Oberle, Numerical computation of optimal trajectories for coplanar aeroassisted orbital transfer. J. Optim. Theory Appl.107 (2000) 457-479.  
  2. O. Bolza, Calculus of variations. Chelsea (1973).  
  3. F. Bonnans et G. Launay, Large scale direct optimal control applied to the re-entry problem. J. Guidance, Control and Dynamics 21 (1998) 996-1000.  
  4. B. Bonnard et G. Launay, Time minimal control of batch reactors. ESAIM: COCV3 (1998) 407-467.  
  5. B. Bonnard et I. Kupka, Théorie des singularités de l'application entrée/sortie et optimalité des singulières. Forum Math.5 (1993) 111-159.  
  6. A. Bryson et Y.C. Ho, Applied optimal control. Hemisphere Pub. Corporation (1975).  
  7. J.B. Caillau et J. Noailles, Coplanar control of a satellite around the Earth. ESAIM: COCV6 (2001) 239-258.  
  8. CNES, Mécanique spatiale. Cepadues Eds. (1993).  
  9. J.M. Coron et L. Praly, Guidage en rentrée atmosphérique, Rapport 415. CNES (2000).  
  10. I. Ekeland, Discontinuité des champs de vecteurs extrémaux en calcul des variations. Publ. Math. IHES47 (1977) 5-32.  
  11. A.D. Ioffe et V.M. Tikhomirov, Theory of extremal problems. North Holland (1979).  
  12. P.H. Jacobsonet al., New necessary conditions of optimality for control problems with state-variable inequality constraints. J. Math. Anal.35 (1971) 255-284.  
  13. A.J. Krener et H. Schättler, The structure of small time reachable sets in small dimensions. SIAM J. Control Optim.27 (1989) 120-147.  
  14. I. Kupka, Geometric theory of extremals in optimal control problems. Trans. Amer. Math. Soc.299 (1987) 225-243.  
  15. H. Maurer, On optimal control problems with bounded state variables and control appearing linearly. SIAM J. Control Optim.15 (1977) 345-362.  
  16. A. Miele, Recent advances in the optimization and guidance of aeroassisted orbital transfers. Acta Astronautica38 (1996) 747-768.  
  17. H.J. Pesch, A practical guide to the solution of real-life optimal control problems. Control Cybernet. 23 (1994).  
  18. V. Pontryagin et al., Méthodes mathématiques des processus optimaux. Eds. Mir (1974).  
  19. H. Schättler, The local structure of time-optimal trajectories in dimension 3 under generic conditions. SIAM J. Control Optim.26 (1988) 899-918.  
  20. H.J. Sussmann, The structure of time-optimal trajectories for single-input systems in the plane: The C non singular case. SIAM J. Control Optim.25 (1987) 856-905.  

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.