Une approche géométrique du contrôle optimal de l'arc atmosphérique de la navette spatiale
Bernard Bonnard; Emmanuel Trélat
ESAIM: Control, Optimisation and Calculus of Variations (2010)
- Volume: 7, page 179-222
- ISSN: 1292-8119
Access Full Article
topAbstract
topHow to cite
topBonnard, Bernard, and Trélat, Emmanuel. "Une approche géométrique du contrôle optimal de l'arc atmosphérique de la navette spatiale." ESAIM: Control, Optimisation and Calculus of Variations 7 (2010): 179-222. <http://eudml.org/doc/90618>.
@article{Bonnard2010,
abstract = {
The aim of this article is to make some geometric remarks and
some preliminary calculations in order to construct the optimal
atmospheric arc of a spatial shuttle (problem of reentry on Earth
or Mars Sample Return
project). The system describing the trajectories is in
dimension 6, the control is the bank angle and the cost is the
total thermal flux. Moreover there are state constraints (thermal
flux, normal acceleration and dynamic pressure). Our study is
mainly geometric and is founded on the evaluation of the
accessibility set taking into account the state constraints. We
make an analysis of the extremals of the Minimum Principle in the
non-constrained case, and give a version of the Minimum Principle
adapted to deal with the state constraints.
},
author = {Bonnard, Bernard, Trélat, Emmanuel},
journal = {ESAIM: Control, Optimisation and Calculus of Variations},
keywords = {Contrôle optimal avec contraintes sur l'état;
principes du minimum; mécanique céleste; arc atmosphérique.; optimal control with state constraints; minimum principle; celestial mechanics; atmospheric arc},
language = {eng},
month = {3},
pages = {179-222},
publisher = {EDP Sciences},
title = {Une approche géométrique du contrôle optimal de l'arc atmosphérique de la navette spatiale},
url = {http://eudml.org/doc/90618},
volume = {7},
year = {2010},
}
TY - JOUR
AU - Bonnard, Bernard
AU - Trélat, Emmanuel
TI - Une approche géométrique du contrôle optimal de l'arc atmosphérique de la navette spatiale
JO - ESAIM: Control, Optimisation and Calculus of Variations
DA - 2010/3//
PB - EDP Sciences
VL - 7
SP - 179
EP - 222
AB -
The aim of this article is to make some geometric remarks and
some preliminary calculations in order to construct the optimal
atmospheric arc of a spatial shuttle (problem of reentry on Earth
or Mars Sample Return
project). The system describing the trajectories is in
dimension 6, the control is the bank angle and the cost is the
total thermal flux. Moreover there are state constraints (thermal
flux, normal acceleration and dynamic pressure). Our study is
mainly geometric and is founded on the evaluation of the
accessibility set taking into account the state constraints. We
make an analysis of the extremals of the Minimum Principle in the
non-constrained case, and give a version of the Minimum Principle
adapted to deal with the state constraints.
LA - eng
KW - Contrôle optimal avec contraintes sur l'état;
principes du minimum; mécanique céleste; arc atmosphérique.; optimal control with state constraints; minimum principle; celestial mechanics; atmospheric arc
UR - http://eudml.org/doc/90618
ER -
References
top- H. Baumann et H.J. Oberle, Numerical computation of optimal trajectories for coplanar aeroassisted orbital transfer. J. Optim. Theory Appl.107 (2000) 457-479.
- O. Bolza, Calculus of variations. Chelsea (1973).
- F. Bonnans et G. Launay, Large scale direct optimal control applied to the re-entry problem. J. Guidance, Control and Dynamics 21 (1998) 996-1000.
- B. Bonnard et G. Launay, Time minimal control of batch reactors. ESAIM: COCV3 (1998) 407-467.
- B. Bonnard et I. Kupka, Théorie des singularités de l'application entrée/sortie et optimalité des singulières. Forum Math.5 (1993) 111-159.
- A. Bryson et Y.C. Ho, Applied optimal control. Hemisphere Pub. Corporation (1975).
- J.B. Caillau et J. Noailles, Coplanar control of a satellite around the Earth. ESAIM: COCV6 (2001) 239-258.
- CNES, Mécanique spatiale. Cepadues Eds. (1993).
- J.M. Coron et L. Praly, Guidage en rentrée atmosphérique, Rapport 415. CNES (2000).
- I. Ekeland, Discontinuité des champs de vecteurs extrémaux en calcul des variations. Publ. Math. IHES47 (1977) 5-32.
- A.D. Ioffe et V.M. Tikhomirov, Theory of extremal problems. North Holland (1979).
- P.H. Jacobsonet al., New necessary conditions of optimality for control problems with state-variable inequality constraints. J. Math. Anal.35 (1971) 255-284.
- A.J. Krener et H. Schättler, The structure of small time reachable sets in small dimensions. SIAM J. Control Optim.27 (1989) 120-147.
- I. Kupka, Geometric theory of extremals in optimal control problems. Trans. Amer. Math. Soc.299 (1987) 225-243.
- H. Maurer, On optimal control problems with bounded state variables and control appearing linearly. SIAM J. Control Optim.15 (1977) 345-362.
- A. Miele, Recent advances in the optimization and guidance of aeroassisted orbital transfers. Acta Astronautica38 (1996) 747-768.
- H.J. Pesch, A practical guide to the solution of real-life optimal control problems. Control Cybernet. 23 (1994).
- V. Pontryagin et al., Méthodes mathématiques des processus optimaux. Eds. Mir (1974).
- H. Schättler, The local structure of time-optimal trajectories in dimension 3 under generic conditions. SIAM J. Control Optim.26 (1988) 899-918.
- H.J. Sussmann, The structure of time-optimal trajectories for single-input systems in the plane: The non singular case. SIAM J. Control Optim.25 (1987) 856-905.
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.