Time minimal control of batch reactors

B. Bonnard; G. Launay

ESAIM: Control, Optimisation and Calculus of Variations (1998)

  • Volume: 3, page 407-467
  • ISSN: 1292-8119

How to cite

top

Bonnard, B., and Launay, G.. "Time minimal control of batch reactors." ESAIM: Control, Optimisation and Calculus of Variations 3 (1998): 407-467. <http://eudml.org/doc/90532>.

@article{Bonnard1998,
author = {Bonnard, B., Launay, G.},
journal = {ESAIM: Control, Optimisation and Calculus of Variations},
keywords = {chemical systems; conjugate points; time-optimal control; batch irreversible chain reaction; switchings; switching functions; focal points; singular extremal; numerical simulation; chemical kinetics},
language = {eng},
pages = {407-467},
publisher = {EDP Sciences},
title = {Time minimal control of batch reactors},
url = {http://eudml.org/doc/90532},
volume = {3},
year = {1998},
}

TY - JOUR
AU - Bonnard, B.
AU - Launay, G.
TI - Time minimal control of batch reactors
JO - ESAIM: Control, Optimisation and Calculus of Variations
PY - 1998
PB - EDP Sciences
VL - 3
SP - 407
EP - 467
LA - eng
KW - chemical systems; conjugate points; time-optimal control; batch irreversible chain reaction; switchings; switching functions; focal points; singular extremal; numerical simulation; chemical kinetics
UR - http://eudml.org/doc/90532
ER -

References

top
  1. [1] A. Agrachev: Symplectic methods in optimization and control. Geometry of feedback and optimal control, Marcel Dekker, New York, 1997. Zbl0965.93034
  2. [2] B. Bonnard: Rapport préliminaire sur la conduite optimale des réacteurs chimiques de type batch, Prépublication de l'Université de Bourgogne, Laboratoire de Topologie, n° 58, 1995. 
  3. [3] B. Bonnard, J. de Morant: Towards a geometric theory in the time minimal control of chemical batch reactors, SIAM J. Contr. Opt., 33, 1995, 1279-1311. Zbl0882.49024MR1348110
  4. [4] B. Bonnard, I. Kupka: Théorie des singularités de l'application entrée/sortie et optimalité des trajectoires singulières dans le problème du temps minimal, Forum mathematicum, 5, 1993, 111-159. Zbl0779.49025MR1205250
  5. [5] B. Bonnard, G. Launay, M. Pelletier: Classification générique de synthèses temps minimales avec cible de codimension un et applications. Ann. IHP (an), 14, 1997, 55-102. Zbl0891.49012MR1437189
  6. [6] I. Ekeland: Discontinuité des champs hamiltoniens et existence de solutions optimales en calcul des variations, Pub. IHES, 47, 1977, 1-32. Zbl0447.49015MR493584
  7. [7] M. Feinberg: Chemical reaction network structure and stability of complex isothermal reactions, Chemical Engineering Sciences, 42, 1987, 2229-2268. 
  8. [8] H. Grauert, K. Fritzche: Several complex variables, Springer Verlag, New York, 1976. Zbl0381.32001MR414912
  9. [9] W. Harmon Ray: Advanced Process Control, Butterworths Reprint Series in chemical engineering, 1989. 
  10. [10] H. Hermes: Lie algebras of vector fields and local approximation of attainable sets, SIAM J. Control Opt., 16, 1978, 715-727. Zbl0388.49025MR493664
  11. [11] B. Jakubczyk: Critical Hamiltonians and feedback invariants. Geometry of feedback and optimal control, Marcel Dekker, New York, 1997. Zbl0925.93136MR1493015
  12. [12] I. Kupka: Geometric theory of extremals in optimal control problems, I. The fold and Maxwell cases, Trans. Amer. Math. Soc., 299, 1987, 225-243. Zbl0606.49016MR869409
  13. [13] I. Kupka: Optimalité des extrémales ordinaires, Communication personnelle. 
  14. [14] G. Launay, M. Pelletier: The generic local structure of time-optimal synthesis with a target of codimension one in dimension greater than two, J. Dyn. Contr. Syst., 3, 1997, 165-204. Zbl0951.49027MR1449981
  15. [15] L. Pontriaguine et al.: Théorie mathématique des processus optimaux, Mir, Moscou, 1974. Zbl0289.49002MR358482
  16. [16] H.J. Sussmann: The structure of time-optimal trajectories for single-input systems in the plane: the C∞ non singular case, SIAM J. Control Opt., 25, 1987, 433-465. Zbl0664.93034MR877071
  17. [17] H.J. Sussmann: Regular synthesis for time-optimal control for single-input real analytic systems in the plane, SIAM J. Control Opt., 25, 1987, 1145-1162. Zbl0696.93026MR905037

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.