An algebraic framework for linear identification
Michel Fliess; Hebertt Sira–Ramírez
ESAIM: Control, Optimisation and Calculus of Variations (2010)
- Volume: 9, page 151-168
- ISSN: 1292-8119
Access Full Article
topAbstract
topHow to cite
topFliess, Michel, and Sira–Ramírez, Hebertt. "An algebraic framework for linear identification." ESAIM: Control, Optimisation and Calculus of Variations 9 (2010): 151-168. <http://eudml.org/doc/90687>.
@article{Fliess2010,
abstract = {
A closed loop parametrical identification procedure for
continuous-time constant linear systems is introduced. This
approach which exhibits good robustness properties with respect to
a large variety of additive perturbations is based on the
following mathematical tools:
(1) module theory;
(2) differential algebra;
(3) operational calculus.
Several concrete case-studies with computer simulations
demonstrate the efficiency of our on-line identification scheme.
},
author = {Fliess, Michel, Sira–Ramírez, Hebertt},
journal = {ESAIM: Control, Optimisation and Calculus of Variations},
keywords = {Linear systems; identifiability; parametric
identification; adaptive control; generalised
proportional-integral controllers; module theory; differential
algebra; operational calculus.; linear systems; parametric identification; generalised proportional-integral controllers; differential algebra; operational calculus},
language = {eng},
month = {3},
pages = {151-168},
publisher = {EDP Sciences},
title = {An algebraic framework for linear identification},
url = {http://eudml.org/doc/90687},
volume = {9},
year = {2010},
}
TY - JOUR
AU - Fliess, Michel
AU - Sira–Ramírez, Hebertt
TI - An algebraic framework for linear identification
JO - ESAIM: Control, Optimisation and Calculus of Variations
DA - 2010/3//
PB - EDP Sciences
VL - 9
SP - 151
EP - 168
AB -
A closed loop parametrical identification procedure for
continuous-time constant linear systems is introduced. This
approach which exhibits good robustness properties with respect to
a large variety of additive perturbations is based on the
following mathematical tools:
(1) module theory;
(2) differential algebra;
(3) operational calculus.
Several concrete case-studies with computer simulations
demonstrate the efficiency of our on-line identification scheme.
LA - eng
KW - Linear systems; identifiability; parametric
identification; adaptive control; generalised
proportional-integral controllers; module theory; differential
algebra; operational calculus.; linear systems; parametric identification; generalised proportional-integral controllers; differential algebra; operational calculus
UR - http://eudml.org/doc/90687
ER -
References
top- K.J. Aström and T. Hägglund, PID Controllers: Theory, Design, and Tuning. Instrument Society of America (1998).
- K.J. Åstrom and B. Wittenmark, Adaptive Control, 2nd Ed. Addison-Wesley (1995).
- A. Buium, Differential Algebra and Diophantine Geometry. Hermann (1994).
- R.R. Bitmead, M. Gevers and V. Wertz, Adaptive Optimal Control: The Thinking Man's GPC. Prentice Hall (1990).
- P. Caines, Linear Stochastic Systems. Wiley (1988).
- S. Diop and M. Fliess, On nonlinear observability, in Proc. 1st Europ. Control Conf., edited by C. Commault, D. Normand-Cyrot, J.M. Dion, L. Dugard, M. Fliess, A. Titli, G. Cohen, A. Benveniste and I.D. Landau. Hermès (1991) 152-157.
- S. Diop and M. Fliess, Nonlinear observability, identifiability and persistent trajectories, in Proc. 36thIEEE Conf. Decision Control. Brighton (1991) 714-719.
- G. Doetsch, Theorie und Anwendung der Laplace-Transformation. Springer (1937).
- M. Fliess, Reversible linear and nonlinear discrete-time dynamics, IEEE Trans. Automat. Control37 (1992) 1144-1153.
- M. Fliess and R. Marquez, Continuous-time linear predictive control and flatness: A module-theoretic setting with examples. Int. J. Control73 (2000) 606-623.
- M. Fliess and R. Marquez, Une approche intrinsèque de la commande prédictive linéaire discrète. APII J. Europ. Syst. Automat.35 (2001) 127-147.
- M. Fliess, R. Marquez, E. Delaleau and H. Sira-Ramírez, Correcteurs proportionnels-intégraux généralisés. ESAIM: COCV7 (2002) 23-41.
- M. Fliess and H. Sira-Ramírez, On the noncalibrated visual based control of planar manipulators: An on-line algebraic identification approach, in Proc. IEEE Conf. SMC. Hammamet, Tunisia (2002).
- T. Glad and L. Ljung, Control Theory: Multivariable and Nonlinear Methods. Taylor and Francis (2000).
- G.C. Goodwin and K.S. Sin, Adaptive Filtering Prediction and Control. Prentice Hall (1984).
- L. Hsu and P. Aquino, Adaptive visual tracking with uncertain manipulator dynamics and uncalibrated camera, in Proc. 38th IEEE Conf. Decision Control. Phoenix (1999) 1248-1253.
- R. Isermann, Identifikation dynamischer Systeme. Springer (1987).
- C.R. Johnson, Lectures on Adaptive Parameter Estimation. Prentice Hall (1988).
- E.R. Kolchin, Differential Algebra and Algebraic Groups. Academic Press (1973).
- I.D. Landau, System Identification and Control Design. Prentice-Hall (1990).
- I.D. Landau and A. Besançon-Voda, Identification des systèmes. Hermès (2001).
- I.D. Landau, R. Lozano and M. M'Saad, Adaptive Control. Springer (1997).
- L. Ljung, System Identification: Theory for the User. Prentice-Hall (1987).
- L. Ljung and T. Glad, On global identifiability for arbitrary model parametrizations. Automatica30 (1994) 265-276.
- I. Mareels and J.W. Polderman, Adaptive Systems. An Introduction. Birkhäuser (1996).
- J.C. McConnell and J.C. Robson, Noncommutative Noetherian Rings. Amer. Math. Soc. (2000).
- J. Mikusinski, Operational Calculus, 2nd Ed., Vol. 1. PWN & Pergamon (1983).
- J. Mikusinski and T.K. Boehme, Operational Calculus, 2nd Ed., Vol. 2. PWN & Pergamon (1987).
- K. Narenda and A. Annaswamy, Stable Adaptive Control. Prentice Hall (1989).
- F. Ollivier, Le problème de l'identifiabilité globale : étude théorique, méthodes effectives et bornes de complexité, Thèse. École Polytechnique, Palaiseau (1990).
- J. Richalet, Pratique de l'identification, Éd. Hermès (1998).
- A. Robinson, Local differential algebra. Trans. Amer. Math. Soc.97 (1960) 427-456.
- S. Sastry and M. Bodson, Adaptive Control. Prentice Hall (1989).
- A. Sedoglavic, Méthodes seminumériques en algèbre différentielle ; applications à l'étude des propriétés structurelles de systèmes différentiels algébriques en automatique, Thèse. École polytechnique, Palaiseau (2001).
- H. Sira-Ramírez, E. Fossas and M. Fliess, Output trajectory tracking in an uncertain double bridge ``buck" dc to dc power converter: An algebraic on-line parameter identification approach, in Proc. 41st IEEE Conf. Decision Control (2002).
- H. Sira-Ramírez and M. Fliess, On the discrete-time uncertain visual based control of planar manipulators: An on-line algebraic identification approach, in Proc. 41st IEEE Conf. Decision Control (2002).
- P. Söderström and P. Stoica, System Identification. Prentice-Hall (1989).
- J.-C. Trigeassou, Contribution à l'extension de la méthode des moments en automatique. Application à l'identification des systèmes linéaires, Thèse d'État. Université de Poitiers (1987).
- É. Walter, Identifiability of State Space Models. Springer (1982).
- É. Walter, L. Pronzato, Identification des modèles paramétriques. Masson (1994).
- K. Yosida, Operational Calculus. Springer (1984).
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.