Orlicz capacities and applications to some existence questions for elliptic pdes having measure data
Alberto Fiorenza; Alain Prignet
ESAIM: Control, Optimisation and Calculus of Variations (2010)
- Volume: 9, page 317-341
 - ISSN: 1292-8119
 
Access Full Article
topAbstract
topHow to cite
topFiorenza, Alberto, and Prignet, Alain. "Orlicz capacities and applications to some existence questions for elliptic pdes having measure data." ESAIM: Control, Optimisation and Calculus of Variations 9 (2010): 317-341. <http://eudml.org/doc/90698>.
@article{Fiorenza2010,
	abstract = {
We study the sequence un, which is solution
of $-\{\rm div\}(a(x,\{\nabla\}u_n))  + \Phi''(|u_n|)\,u_n= f_n+ g_n$ in Ω an
open bounded
set of RN and un= 0 on ∂Ω, when fn tends to a
measure concentrated on a set of null Orlicz-capacity. We consider the relation
between this capacity and the N-function Φ, and prove a non-existence
result.
},
	author = {Fiorenza, Alberto, Prignet, Alain},
	journal = {ESAIM: Control, Optimisation and Calculus of Variations},
	keywords = {Elliptic equation; Orlicz space; measure; capacity.; elliptic equation; capacity},
	language = {eng},
	month = {3},
	pages = {317-341},
	publisher = {EDP Sciences},
	title = {Orlicz capacities and applications to some existence questions for elliptic pdes having measure data},
	url = {http://eudml.org/doc/90698},
	volume = {9},
	year = {2010},
}
TY  - JOUR
AU  - Fiorenza, Alberto
AU  - Prignet, Alain
TI  - Orlicz capacities and applications to some existence questions for elliptic pdes having measure data
JO  - ESAIM: Control, Optimisation and Calculus of Variations
DA  - 2010/3//
PB  - EDP Sciences
VL  - 9
SP  - 317
EP  - 341
AB  - 
We study the sequence un, which is solution
of $-{\rm div}(a(x,{\nabla}u_n))  + \Phi''(|u_n|)\,u_n= f_n+ g_n$ in Ω an
open bounded
set of RN and un= 0 on ∂Ω, when fn tends to a
measure concentrated on a set of null Orlicz-capacity. We consider the relation
between this capacity and the N-function Φ, and prove a non-existence
result.
LA  - eng
KW  - Elliptic equation; Orlicz space; measure; capacity.; elliptic equation; capacity
UR  - http://eudml.org/doc/90698
ER  - 
References
top- D.R. Adams and L.I. Hedberg, Function spaces and potential theory. Springer-Verlag, Berlin, Grundlehren Math. Wiss.314 (1996).
 - N. Aissaoui, Bessel potentials in Orlicz spaces. Rev. Mat. Univ. Complut. Madrid10 (1997) 55-79.
 - N. Aissaoui, Some developments of Strongly Nonlinear Potential Theory. Libertas Math.19 (1999) 155-170.
 - N. Aissaoui and A. Benkirane, Capacités dans les espaces d'Orlicz. Ann. Sci. Math. Québec18 (1994) 1-23.
 - P. Baras and M. Pierre, Singularités éliminables pour des équations semi-linéaires. Ann. Inst. Fourier (Grenoble)34 (1984) 185-206.
 - P. Bénilan, L. Boccardo, T. Gallouët, R. Gariepy, M. Pierre and J.L. Vazquez, An L1 theory of existence and uniqueness of nonlinear elliptic equations. Ann. Scuola Norm. Sup. Pisa Cl. Sci.22 (1995) 240-273.
 - P. Bénilan, H. Brezis and M. Crandall, A semilinear elliptic equation in L1(RN). Ann. Scuola Norm. Sup. Pisa Cl. Sci.2 (1975) 523-555.
 - L. Boccardo and T. Gallouët, Nonlinear elliptic equations with right-hand side measures. Comm. Partial Differential Equations17 (1992) 641-655.
 - H. Brezis, Nonlinear elliptic equations involving measures, in Contributions to nonlinear partial differential equations (Madrid, 1981). Pitman, Boston, Mass.-London, Res. Notes in Math. 89 1983) 82-89.
 - G. Choquet, Theory of Capacities, Ann. Inst. Fourier (Grenoble)5 (1953-1954) 131-295 (Ch. 1, Thm 4.1, p. 142).
 - G. Dal Maso, F. Murat, L. Orsina and A. Prignet, Renormalized solutions for elliptic equations with general measure data. Ann. Scuola Norm. Sup. Pisa CL. Sci.28 (1999) 741-808.
 - T.K. Donaldson and N.S. Trudinger, Orlicz-Sobolev spaces and embedding theorems. J. Funct. Anal.8 (1971) 52-75.
 - A. Fiorenza, An inequality for Jensen Means. Nonlinear Anal.16 (1991) 191-198.
 - T. Gallouët and J.M. Morel, Resolution of a semilinear equation in L1. Proc. Roy. Soc. Edinburgh96 (1984) 275-288.
 - J. Gustavsson and J. Peetre, Interpolation of Orlicz spaces. Studia Math.60 (1977) 33-59.
 - V. Kokilashvili and M. Krbec, Weighted inequalities in Lorentz and Orlicz spaces. World Scientific (1991).
 - M.A. Krasnosel'skii and Ya.B. Rutickii, Convex functions and Orlicz Spaces. Noordhoff Ltd. (1961).
 - J. Leray and J.-L. Lions, Quelques résultats de Visik sur les problèmes elliptiques non linéaires par les méthodes de Minty-Browder. Bull. Soc. Math. France93 (1965) 97-107.
 - L. Maligranda, Orlicz Spaces and Interpolation. Dep. de Matematica Univ. Estadual de Campinas, Campinas, Brazil (1989).
 - J. Malý, Coarea properties of Sobolev functions, in Proc. Function Spaces, Differential Operators and Nonlinear Analysis (The Hans Triebel Anniversary Volume). Birkhäuser, Basel (to appear).
 - J. Malý, D. Swanson and W.P. Ziemer, Fine behavior of functions with gradient in a Lorentz space (in preparation).
 - V.G. Maz'ja and V.P. Havin, Nonlinear potential theory. Uspekhi Mat. Nauk27 (1972) 67-138. English translation: Russian Math. Surveys27 (1972) 71-148.
 - L. Orsina and A. Prignet, Nonexistence of solutions for some nonlinear elliptic equations involving measures. Proc. Roy. Soc. Edinburgh Ser. A130 (2000) 167-187.
 - L.E. Persson, Interpolation with a parameter function. Math. Scand.59 (1986) 199-222.
 - M.M. Rao and Z.D. Ren, Theory of Orlicz Spaces. Marcel Dekker (1991).
 - C.A. Rogers, Hausdorff Measures. Cambridge University Press (1970).
 - E.M. Stein, Singular Integrals and Differentiability properties of functions. Princeton University Press (1970).
 
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.