On periodic motions of a two dimensional Toda type chain
Gianni Mancini; P. N. Srikanth
ESAIM: Control, Optimisation and Calculus of Variations (2010)
- Volume: 11, Issue: 1, page 72-87
 - ISSN: 1292-8119
 
Access Full Article
topAbstract
topHow to cite
topMancini, Gianni, and Srikanth, P. N.. "On periodic motions of a two dimensional Toda type chain." ESAIM: Control, Optimisation and Calculus of Variations 11.1 (2010): 72-87. <http://eudml.org/doc/90757>.
@article{Mancini2010,
	abstract = {
In this paper we consider a chain of strings with fixed end points coupled with nearest neighbour interaction potential of exponential type, i.e.$$\left\\{\begin\{array\}\{l\} 
\varphi^\{i\}\_\{tt\} - \varphi^\{i\}\_\{xx\} = \exp(\varphi^\{i+1\} -\varphi^\{i\}) - \exp( \varphi^\{i\} - \varphi\{i-1\} ) \quad 0<x<\pi, \quad t \in \rm I\hskip-1.8pt R, i \in Z\!\!\!Z\quad
   (TC) \varphi^i (0,t) = \varphi^i (\pi,t) = 0 \quad  \forall t, i. 
\end\{array\}\right.$$
We consider the case of “closed chains" i.e.$ \varphi^\{i+N\} = \varphi^i \forall i \in Z\!\!\!Z$ and some $ N \in \{I\!\!N\}$ and look for solutions which are peirodic
in time. The existence of periodic solutions for the dual problem is proved in
 Orlicz space setting.
},
	author = {Mancini, Gianni, Srikanth, P. N.},
	journal = {ESAIM: Control, Optimisation and Calculus of Variations},
	keywords = {Periodic; Toda type chain.; Toda chain; periodic solutions; mountain pass},
	language = {eng},
	month = {3},
	number = {1},
	pages = {72-87},
	publisher = {EDP Sciences},
	title = {On periodic motions of a two dimensional Toda type chain},
	url = {http://eudml.org/doc/90757},
	volume = {11},
	year = {2010},
}
TY  - JOUR
AU  - Mancini, Gianni
AU  - Srikanth, P. N.
TI  - On periodic motions of a two dimensional Toda type chain
JO  - ESAIM: Control, Optimisation and Calculus of Variations
DA  - 2010/3//
PB  - EDP Sciences
VL  - 11
IS  - 1
SP  - 72
EP  - 87
AB  - 
In this paper we consider a chain of strings with fixed end points coupled with nearest neighbour interaction potential of exponential type, i.e.$$\left\{\begin{array}{l} 
\varphi^{i}_{tt} - \varphi^{i}_{xx} = \exp(\varphi^{i+1} -\varphi^{i}) - \exp( \varphi^{i} - \varphi{i-1} ) \quad 0<x<\pi, \quad t \in \rm I\hskip-1.8pt R, i \in Z\!\!\!Z\quad
   (TC) \varphi^i (0,t) = \varphi^i (\pi,t) = 0 \quad  \forall t, i. 
\end{array}\right.$$
We consider the case of “closed chains" i.e.$ \varphi^{i+N} = \varphi^i \forall i \in Z\!\!\!Z$ and some $ N \in {I\!\!N}$ and look for solutions which are peirodic
in time. The existence of periodic solutions for the dual problem is proved in
 Orlicz space setting.
LA  - eng
KW  - Periodic; Toda type chain.; Toda chain; periodic solutions; mountain pass
UR  - http://eudml.org/doc/90757
ER  - 
References
top- R.A. Adams, Sobolev Spaces. A.P (1975).
 - V.I. Arnold, Proof of a Theorem of A.N. Kolmogorov on the invariance of quasi-periodic motions under small perturbations of the Hamiltonian. Russ. Math. Surv.18 (1963) 9–36.
 - H. Brezis and L. Nirenberg, Forced vibrations for a nonlinear wave equation. CPAM, XXXI(1) (1978) 1–30.
 - H. Brezis, J.M. Coron and L. Nirenberg, Free Vibrations for a Nonlinear Wave Equation and a Theorem of P. Rabinowitz. CPAM, XXXIII (1980) 667–684.
 - G. Friesecke and A.D. Wattis Jonathan, Existence Theorem for Solitary Waves on Lattices. Commun. Math. Phys.161 (1994) 391–418.
 - G. Iooss, Travelling waves in the Fermi-Pasta-Ulam lattice. Nonlinearity13 (2000) 849–866.
 - M.A. Krasnoselsky and Y.B. Rutitsky, Convex Functions and Orlicz Spaces. Internat. Monogr. Adv. Math. Phys. Hindustan Publishing Corpn., India (1962).
 - H. Lovicarova', Periodic solutions of a weakly nonlinear wave equation in one dimension. Czechmath. J.19 (1969) 324–342.
 - J. Moser, On invariant curves of area-preserving mappings of an annulus. Nachr. Akad. Wiss. Göttingen, K12 (1962) 1.
 - A.V. Mikhailov, Integrability of a Two-Dimensional Generalization of the Toda Chain. JETP Lett.30 (1979) 414–413.
 - L. Nirenberg, Variational Methods in nonlinear problems. M. Giaquinta Ed., Springer-Verlag, Lect. Notes Math.1365 (1987).
 - P.H. Rabinowitz, Periodic solutions of Hamiltonian Systems. Comm. Pure Appl. Math.31 (1978) 157–184.
 - B. Ruf and P.N. Srikanth, On periodic Motions of Lattices of Toda Type via Critical Point Theory. Arch. Ration. Mech. Anal.126 (1994) 369–385.
 - M. Toda, Theory of Nonlinear Lattices. Springer-Verlag (1989).
 
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.