The derived functors of l i m and protorsion modules

Timothy Porter

Cahiers de Topologie et Géométrie Différentielle Catégoriques (1983)

  • Volume: 24, Issue: 2, page 115-131
  • ISSN: 1245-530X

How to cite

top

Porter, Timothy. "The derived functors of $lim$ and protorsion modules." Cahiers de Topologie et Géométrie Différentielle Catégoriques 24.2 (1983): 115-131. <http://eudml.org/doc/91321>.

@article{Porter1983,
author = {Porter, Timothy},
journal = {Cahiers de Topologie et Géométrie Différentielle Catégoriques},
keywords = {derived functors; modules of finite Krull-Gabriel dimension; extensions; countable direct unions; protorsion modules},
language = {eng},
number = {2},
pages = {115-131},
publisher = {Dunod éditeur, publié avec le concours du CNRS},
title = {The derived functors of $lim$ and protorsion modules},
url = {http://eudml.org/doc/91321},
volume = {24},
year = {1983},
}

TY - JOUR
AU - Porter, Timothy
TI - The derived functors of $lim$ and protorsion modules
JO - Cahiers de Topologie et Géométrie Différentielle Catégoriques
PY - 1983
PB - Dunod éditeur, publié avec le concours du CNRS
VL - 24
IS - 2
SP - 115
EP - 131
LA - eng
KW - derived functors; modules of finite Krull-Gabriel dimension; extensions; countable direct unions; protorsion modules
UR - http://eudml.org/doc/91321
ER -

References

top
  1. 1 N. Bourbaki, Topologie Générale, Chap. I- II, Hermann, Paris, 1961. 
  2. 2 P. Gabriel, Des catégories abéliennes, Bull. Soc. Math. France90 (1962), 323-448. Zbl0201.35602MR232821
  3. 3 L. Gruson & C.U. Jensen, Dimensions cohomologiques reliées aux foncteurs lim(i), Kobenhavns Univ. Math. Inst. Preprint Ser.19 (1980). 
  4. 4 L. Gruson& M. Raynaud, Critères de platitude et de projectivité, Invent. Math.13 (1971), 1- 89. Zbl0227.14010MR308104
  5. 5 M. Hacque, Eléments de la théorie de la localisation, Notes d'Enseignement (D. E. A.), Dept. Math. Univ.LyonI (1980). 
  6. 6 M. Hacque, Caractérisations générales des localisations, Publ. Dépt. Math. Lyon7-4 (1970), 45- 103. Zbl0253.18011MR347904
  7. 7 P. Hilton & U. St Ammbach, A course in homological algebra, Graduate Texts in Math.4, Springer, 1970. Zbl0863.18001MR1438546
  8. 8 C.U. Jensen, On the vanishing of lim(i), J. Alg.15 (1970), 151-166. Zbl0199.36202MR260839
  9. 9 C.U. Jensen, Les foncteurs dérivés de lim et leurs applications en théorie des modules, Lecture Notes in Math.254, Springer (1972). Zbl0238.18007MR407091
  10. 10 J. Lambek, Torsion theories, additive semantics and rings of quotients, Lecture Notes in Math.177, Springer (1971). Zbl0213.31601MR284459
  11. 11 N. Popescu, Abelian categories with applications to rings and modules, London Math. Soc. Monographs3, Academic Press, 1973. Zbl0271.18006MR340375
  12. 12 T. Porter, Essential properties of pro-objects in Grothendieck categories, Cahiers Top. et Géom. Diff. XX-1 (1979), 3- 57. Zbl0414.18006MR544528
  13. 13 J.-E. Roos, Sur les dérivés de lim . Applications, C.R. A. S . Paris252 (1961), 3702-3704. Zbl0102.02501MR132091
  14. 14 B. Stenström, Rings and modules of quotients, Lecture Notes in Math.237, Springer (1971). Zbl0229.16003MR325663
  15. 15 R.B. Warfield, Jr. & M. Huber, On th e values of the functor lim(i), Arch. der Math.33 (1979), 430-436. Zbl0427.20048MR567363

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.