Equimorphy in varieties of double Heyting algebras
Colloquium Mathematicae (1998)
- Volume: 77, Issue: 1, page 41-58
- ISSN: 0010-1354
Access Full Article
topAbstract
topHow to cite
topReferences
top- [1] M. E. Adams, V. Koubek and J. Sichler, Homomorphisms and endomorphisms in varieties of pseudocomplemented distributive lattices (with applications to Heyting algebras), Trans. Amer. Math. Soc. 285 (1984), 57-79. Zbl0523.06015
- [2] V. Koubek and H. Radovanská, Algebras determined by their endomorphism monoids, Cahiers Topologie Géom. Différentielle Catégoriques 35 (1994), 187-225. Zbl0820.08002
- [3] V. Koubek and J. Sichler, Categorical universality of regular distributive double -algebras, Glasgow Math. J. 32 (1990), 329-340. Zbl0714.18002
- [4] ---, ---, Priestley duals of products, Cahiers Topologie Géom. Différentielle Catégoriques 32 (1991), 243-256.
- [5] —, —, Finitely generated universal varieties of distributive double -algebras, ibid. 35 (1994), 139-164. Zbl0905.06008
- [6] ---, ---, Equimorphy in varieties of distributive double p-algebras, Czechoslovak Math. J., to appear. Zbl0952.06013
- [7] K. D. Magill, The semigroup of endomorphisms of a Boolean ring, Semigroup Forum 4 (1972), 411-416.
- [8] C. J. Maxson, On semigroups of Boolean ring endomorphisms, ibid., 78-82. Zbl0262.06011
- [9] R. McKenzie and C. Tsinakis, On recovering a bounded distributive lattice from its endomorphism monoid, Houston J. Math. 7 (1981), 525-529. Zbl0492.06009
- [10] H. A. Priestley, Representation of distributive lattices by means of ordered Stone spaces, Bull. London Math. Soc. 2 (1970), 186-190. Zbl0201.01802
- [11] ---, Ordered sets and duality for distributive lattices, Ann. Discrete Math. 23 (1984), 36-60.
- [12] A. Pultr and V. Trnková, Combinatorial, Algebraic and Topological Representations of Groups, Semigroups and Categories, North-Holland, Amsterdam, 1980.
- [13] B. M. Schein, Ordered sets, semilattices, distributive lattices and Boolean algebras with homomorphic endomorphism semigroups, Fund. Math. 68 (1970), 31-50. Zbl0197.28902