Weak subobjects and weak limits in categories and homotopy categories

Marco Grandis

Cahiers de Topologie et Géométrie Différentielle Catégoriques (1997)

  • Volume: 38, Issue: 4, page 301-326
  • ISSN: 1245-530X

How to cite

top

Grandis, Marco. "Weak subobjects and weak limits in categories and homotopy categories." Cahiers de Topologie et Géométrie Différentielle Catégoriques 38.4 (1997): 301-326. <http://eudml.org/doc/91597>.

@article{Grandis1997,
author = {Grandis, Marco},
journal = {Cahiers de Topologie et Géométrie Différentielle Catégoriques},
keywords = {weak pullback; weak subobject; variation; homotopy category},
language = {eng},
number = {4},
pages = {301-326},
publisher = {Dunod éditeur, publié avec le concours du CNRS},
title = {Weak subobjects and weak limits in categories and homotopy categories},
url = {http://eudml.org/doc/91597},
volume = {38},
year = {1997},
}

TY - JOUR
AU - Grandis, Marco
TI - Weak subobjects and weak limits in categories and homotopy categories
JO - Cahiers de Topologie et Géométrie Différentielle Catégoriques
PY - 1997
PB - Dunod éditeur, publié avec le concours du CNRS
VL - 38
IS - 4
SP - 301
EP - 326
LA - eng
KW - weak pullback; weak subobject; variation; homotopy category
UR - http://eudml.org/doc/91597
ER -

References

top
  1. [1] M. Barr - C.F. Wells, Toposes, triples and theories, Springer1984. Zbl0567.18001MR771116
  2. [2] H.J. Baues, Combinatorial homotopy and 4-dimensional complexes, de Gruyter, Berlin1991. Zbl0716.55001MR1096295
  3. [3] H.J. Baues, Homotopy type and homology, Oxford Science Publ, Clarendon Press, Oxford1996. Zbl0857.55001MR1404516
  4. [4] G. Birkhoff, Lattice Theory, Amer. Math. Soc. Coll. Publ.25, New York1948. Zbl0033.10103MR29876
  5. [5] A.K. Bousfield - D.M. Kan, Homotopy limits, completions and localisations, Lecture Notes in Mathematics304, Springer1972. Zbl0259.55004MR365573
  6. [6] A. Carboni - M. Grandis, Categories of projective spaces, J. Pure Appl. Algebra110 (1996) 241-258. Zbl0863.18006MR1393115
  7. [7] A. Carboni - E. Vitale, Regular and exact completions, to appear. Zbl0891.18002MR1600009
  8. [8] L. Coppey, Algèbres de décompositions et précatégories, Diagrammes3 (1980, supplément). Zbl0497.18015MR684912
  9. [9] B. Eckmann - P.J. Hilton, Unions and intersections in homotopy theory, Comm. Math. Helv.38 (1963-64), 293-307. Zbl0126.38903MR167982
  10. [10] P. Freyd, Representations in abelian categories, in: Proceedings of the Conference on Categorical Algebra, La Jolla1965, 95-120, Springer1966. Zbl0202.32402MR209333
  11. [11] P. Freyd, Stable homotopy, in: Proceedings of the Conference on Categorical Algebra, La Jolla1965, 121-176, Springer1966. Zbl0195.52901MR211399
  12. [12] P. Freyd, Stable homotopy II, in: Proc. Symp. Pure Maths. XVII, Amer. Math. Soc.1970, 161-183. Zbl0222.55020MR258028
  13. [13] P. Freyd, On the concreteness of certain categories, in: Symposia Mathematica, Vol. IV (INDAM, Roma1968/69), pp. 431-456. Academic Press, London, 1970. Zbl0248.18008MR271184
  14. [14] P. Freyd, Homotopy is not concrete, in: The Steenrod algebra and its applications (Battelle Memorial Inst., Columbus, Ohio, 1970), pp. 25-34, Lecture Notes in Mathematics168, Springer1970. Zbl0212.55801MR276961
  15. [15] P. Gabriel - M. Zisman, Calculus of fractions and homotopy theory, Springer1967. Zbl0186.56802MR210125
  16. [16] M. Grandis, Homotopical algebra in homotopical categories, Appl. Categ. Structures, 2 (1994), 351-406. Zbl0826.55015MR1300721
  17. [17] M. Grandis, Categorically algebraic foundations for homotopical algebra, Appl. Categorical Structures, to appear. Zbl0906.55015MR1478526
  18. [18] R.W. Kieboom, On stable homotopy monomorphisms, Appl. Categorical Structures, to appear. Zbl0873.18001MR1456520
  19. [19] M. Korostenski - W. Tholen, Factorisation systems as Eilenberg-Moore algebras, J. Pure Appl. Algebra85 (1993), 57-72. Zbl0778.18001MR1207068
  20. [20] A.G. Kurosh, The theory of groups, Chelsea Publ. Co., New York1960. Zbl0064.25104MR109842
  21. [21] F.W. Lawvere, Adjoints in and among bicategories, in: "Logic and Algebra", 181-189, M. Dekker, New York, 1996. Zbl0862.18002MR1404939
  22. [22] S. Mac Lane, Categories for the working mathematician, Springer1971. Zbl0906.18001MR1712872
  23. [23] M. Mather, Pull-backs in homotopy theory, Can. J. Math.28 (1976), 225-263. Zbl0351.55005MR402694
  24. [24] R.M. Vogt, Homotopy limits and colimits, Math. Z.134 (1973), 11-52. Zbl0276.55006MR331376
  25. [25] G.W. Whitehead, Elements of homotopy theory, Springer1978. Zbl0406.55001MR516508

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.