Sur quelques limitations des algorithmes dans le traitement des suites

J.-P. Delahaye

RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications (1985)

  • Volume: 19, Issue: 1, page 3-20
  • ISSN: 0988-3754

How to cite

top

Delahaye, J.-P.. "Sur quelques limitations des algorithmes dans le traitement des suites." RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications 19.1 (1985): 3-20. <http://eudml.org/doc/92221>.

@article{Delahaye1985,
author = {Delahaye, J.-P.},
journal = {RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications},
keywords = {sequence transformation; periodicity; extraction; convergent sequences; acceleration; quasi algorithmic transformations; points of accumulation},
language = {fre},
number = {1},
pages = {3-20},
publisher = {EDP-Sciences},
title = {Sur quelques limitations des algorithmes dans le traitement des suites},
url = {http://eudml.org/doc/92221},
volume = {19},
year = {1985},
}

TY - JOUR
AU - Delahaye, J.-P.
TI - Sur quelques limitations des algorithmes dans le traitement des suites
JO - RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications
PY - 1985
PB - EDP-Sciences
VL - 19
IS - 1
SP - 3
EP - 20
LA - fre
KW - sequence transformation; periodicity; extraction; convergent sequences; acceleration; quasi algorithmic transformations; points of accumulation
UR - http://eudml.org/doc/92221
ER -

References

top
  1. 1. O. ABERTH, Analysis in the computable number field, J.A.C.M., vol. 15, n° 2, April 1968, p. 275-299. Zbl0159.01201MR237337
  2. 2. A. ARNOLD et M. NIVAT, Metric interpretations of infinite trees and semantic of non deterministic recursive programs, Theoretical Computer Science, vol. 11, 1980, p. 181-205. Zbl0427.68022MR572215
  3. 3. L. BLUM et M. BLUM, Toward a mathematical theory of induetive inference information and control, vol. 28, 1975, p. 125-155. Zbl0375.02028MR395312
  4. 4. L. BOASSON et M. NIVAT, Adhérences of languages, Journal of Computer and System Science, vol. 20, 1980, p. 285-309. Zbl0471.68052MR584863
  5. 5. C. BREZINSKI, Accélération de la convergence en analyse numérique, Lecture notes in Mathematics, vol. 584, Springer Verlag, Heidelberg, 1977. Zbl0352.65003MR455266
  6. 6. C. BREZINSKI, Algorithmes d'accélération de la convergence. Étude numérique Technip, Paris, 1978. Zbl0396.65001MR511657
  7. 7. G. COMYN, Objets infinis calculables, Thèse d'État, Lille, 1982. 
  8. 8. G. COMYN et M. DAUCHET, Metric approximations in ordered domains, Équipe Lilloise d'Informatique Théorique, I.T., n° 59, octobre 1983. Université de Lille-I. 
  9. 9. G. COMYN et M. DAUCHET, Approximation of infinitary objects, Ninth Colloquium ICALP, Lecture Notes in Computer Science. Springer Verlag, vol. 140, 1982, p. 116-127. Zbl0505.03013MR675450
  10. 10. J.-P DELAHAYE, Algorithmes pour suites non convergentes, Numer. math., vol.3, 1980, p.333-347. Zbl0411.65003MR571293
  11. 11. J.-P DELAHAY, Automatic selection of sequences transformations, Mathematics of computation, vol. 37, 1981, p. 197-204. Zbl0468.65001MR616372
  12. 12. J.-P. DELAHAYE, Optimalité du procédé ∆2 d'Aitken pour l'accélération de la convergence linéaire, R.A.I.R.O., Analyse numérique, vol. 15, 1981, p. 321-330. Zbl0468.65002
  13. 13. J.-P. DELAHAYE, Théorie des transformations de suites en analyse numérique, Applications thèse d'État, Lille, 1982. 
  14. 14. J.-P. DELAHAYE et B. GERMAIN-BONNE, Résultats négatifs en accélération de la convergenceNumér. Math., vol. 35, 1980, p. 443-457. Zbl0423.65003MR593838
  15. 15. J.-P. DELAHAYE et B. GERMAIN-BONNE, The set of lagarithmically convergent sequences cannot be accelerated, S.I.A.M. J. Num. Anal., vol. 1982, p. 840-844. Zbl0495.65001MR664889
  16. 16. E. M. GOLD, Limiting recursion, The Journal of symbolic logic, vol. 30, 1965, p. 28-48. Zbl0203.01201MR239972
  17. 17. E. M. GOLD, Language identification in the limit, Information and control, vol. 10, 1967, p. 447-474. Zbl0259.68032
  18. 18. E. MINICOZZI, Some natural properties of strong identification in inductive inference, Theoretical Computer Science, vol. 2, 1976, p. 345-360. Zbl0373.68051MR505370
  19. 19. M. NIVAT, Infinite words, infinite trees, infinite computations, Foundations of Computer Science III. Part. 2 Languages, logic, semantics, J. W. De Bakker (Ed.), J. Van Leeuwen (Ed.), Mathematical Centre Tract, 1979, p. 1-52. Zbl0423.68012MR560292
  20. 20. H. ROGERS, Recursive functions and effective computability, McGraw Hill, New York, 1967. Zbl0183.01401MR224462
  21. 21. L. SCHWARTZ, Analyse. Topologie générale et analyse fonctionnelle, Hermann, Paris, 1970. Zbl0424.46010MR467223
  22. 22. E. WIEDMER, Computing with infinite objects, Theoretical Computer Science vol. 10, 1980, p. 133-155. Zbl0473.68042MR551601
  23. 23. J. WIMP, Sequence transformations and their applications, Academic press, New York, 1981. Zbl0566.47018MR615250

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.