The difference and truth-table hierarchies for NP
Johannes Köbler; Uwe Schöning; Klaus W. Wagner
RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications (1987)
- Volume: 21, Issue: 4, page 419-435
- ISSN: 0988-3754
Access Full Article
topHow to cite
topKöbler, Johannes, Schöning, Uwe, and Wagner, Klaus W.. "The difference and truth-table hierarchies for NP." RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications 21.4 (1987): 419-435. <http://eudml.org/doc/92293>.
@article{Köbler1987,
author = {Köbler, Johannes, Schöning, Uwe, Wagner, Klaus W.},
journal = {RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications},
keywords = {truth-table hierarchy; hierarchy of complexity classes; C-complete set; C-hard set; Boolean function; Turing machine; difference hierarchy; Boolean NP-hierarchy},
language = {eng},
number = {4},
pages = {419-435},
publisher = {EDP-Sciences},
title = {The difference and truth-table hierarchies for NP},
url = {http://eudml.org/doc/92293},
volume = {21},
year = {1987},
}
TY - JOUR
AU - Köbler, Johannes
AU - Schöning, Uwe
AU - Wagner, Klaus W.
TI - The difference and truth-table hierarchies for NP
JO - RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications
PY - 1987
PB - EDP-Sciences
VL - 21
IS - 4
SP - 419
EP - 435
LA - eng
KW - truth-table hierarchy; hierarchy of complexity classes; C-complete set; C-hard set; Boolean function; Turing machine; difference hierarchy; Boolean NP-hierarchy
UR - http://eudml.org/doc/92293
ER -
References
top- 1. A. BLASS and Y. GUREVICH, On the Unique Satisfiability Problem, Information and Control, Vol. 55, 1982, pp. 80-88. Zbl0543.03027MR727739
- 2. R. V. BOOK, T. J. LONG and A. L. SELMAN, Quantitative Relativizations of Complexity Classes, S.I.A.M. J. Comput, Vol. 13, 1984, pp. 461-487. Zbl0599.03041MR749702
- 3. J. CAI and L. HEMACHANDRA, The Boolean Hierarchy: Hardware Over NP, Proc. of the Structure in Complexity Theory Conference, Berkeley 1986 (to appear). Zbl0611.68018MR854893
- 4. H. GALPERIN and A. WIGDERSON, Succinct representation of graphs, Information and Control, Vol. 56, 1986, pp. 183-198. Zbl0538.68053MR735503
- 5. H. HELLER, Relativized Polynomial Hierarchies Extending Two Levels, Math. Syst. Theory, Vol. 17, 1984, pp. 71-84. Zbl0543.03028MR739981
- 6. J. KÖBLER, Untersuchung verschiedener polynomieller Reduktionsklassen von NP, diploma thesis, University of Stuttgart, 1985.
- 7. R. E. LADNER, The Circuit Value Problem is log Space Complete for P, SIGACT News, Vol. 7, 1975, pp. 18-20.
- 8. R. E. LADNER, N. A. LYNCH and A. L. SELMAN, A Comparison of Polynomial Time Reducibilities, Theor. Comput. Sci., Vol. 1, 1975, pp. 103-123. Zbl0321.68039MR395319
- 9. E. W. LEGETT and D. J. MOORE, Optimization Problems and the Polynomial Hierarchy, Theor. Comput. Sci., Vol 15, 1981, pp. 279-289. Zbl0459.68016MR632399
- 10. C. H. PAPADIMITRIOU, On the Complexity of Unique Solutions, Proc. 23rd Symp. Found of Comput. Sci, 1982, pp. 14-20. MR780375
- 11. C. H. PAPADIMITRIOU and M. YANNAKAKIS, The Complexity of Facets (and Some Facets of Complexity), Proc. 14th A.C.M. Symp. Theory of Comput., 1982, pp. 255-260. Zbl0571.68028
- 12. D. B. POSNER, Survey of Non-re Degress ≤0', in DRAKE/WAINER Eds, Recursion Theory: its Generalisations and Applications, Cambridge University Press, 1980, pp. 52-109. Zbl0475.03020MR598303
- 13. L. J. STOCKMEYER, The Polynomial-Time Hierarchy, Theor. Comput. Sci., Vol. 3, 1977, pp. 1-22. Zbl0353.02024MR438810
- 14. G. WECHSUNG and K. W. WAGNER, On the Boolean closure of NP, submitted for publication (extended abstract as: G. WECHSUNG, On the Boolean closure of NP; L.N.C.S., Vol. 199, 1985, pp. 485-493). Zbl0581.68043
- 15. K. W. WAGNER, The Complexity of Problems Concerning Graphs with Regularities, Proc. Symp. Math. Found. of Comput. Sci., 1984, Lecture Notes in Computer Science, Vol. 176, 1984, pp. 544-552. Zbl0548.68039MR783486
- 16. K. W. WAGNER, Maximum and Minimum Problems, and Some Closures of NP, Proc. 13th Intern Coll. Autom., Lang. and Progr., 1986 (to appear).
Citations in EuDML Documents
top- Edith Hemaspaandra, Jörg Rothe, Holger Spakowski, Recognizing when heuristics can approximate minimum vertex covers is complete for parallel access to NP
- J. Castro, C. Seara, Complexity classes between and
- Edith Hemaspaandra, Jörg Rothe, Holger Spakowski, Recognizing when heuristics can approximate minimum vertex covers is complete for parallel access to NP
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.