On the poles of the scattering matrix for two convex obstacles

Mitsuru Ikawa

Journées équations aux dérivées partielles (1985)

  • Issue: 1, page 1-14
  • ISSN: 0752-0360

How to cite

top

Ikawa, Mitsuru. "On the poles of the scattering matrix for two convex obstacles." Journées équations aux dérivées partielles (1985): 1-14. <http://eudml.org/doc/93121>.

@article{Ikawa1985,
author = {Ikawa, Mitsuru},
journal = {Journées équations aux dérivées partielles},
keywords = {scattering matrix; wave equation; obstacles; order of the singularity; asymptotic expansion},
language = {eng},
number = {1},
pages = {1-14},
publisher = {Ecole polytechnique},
title = {On the poles of the scattering matrix for two convex obstacles},
url = {http://eudml.org/doc/93121},
year = {1985},
}

TY - JOUR
AU - Ikawa, Mitsuru
TI - On the poles of the scattering matrix for two convex obstacles
JO - Journées équations aux dérivées partielles
PY - 1985
PB - Ecole polytechnique
IS - 1
SP - 1
EP - 14
LA - eng
KW - scattering matrix; wave equation; obstacles; order of the singularity; asymptotic expansion
UR - http://eudml.org/doc/93121
ER -

References

top
  1. [1] C. Bardos, J.C. Guillot and J. Ralston, La relation de Poisson pour l'équation des ondes dans un ouvert non borné. Application à la théorie de la diffusion, Comm. Partial Diff. Equ., (1982), 905-958. Zbl0496.35067MR84d:35120
  2. [2] M. Ikawa, Decay of solutions of the wave equation in the exterior of two convex obstacles, Osaka J. Math., 19 (1982), 459-509. Zbl0498.35008MR84e:35018
  3. [3] M. Ikawa, On the poles of the scattering matrix for two strictly convex obstacles, J. Math. Kyoto Univ., 23 (1983), 127-194. Zbl0561.35060MR84e:35118
  4. [4] M. Ikawa, On the poles of the scattering matrix for two strictly convex obstacles : Addendum, J. Math. Kyoto Univ., 23 (1983), 795-802. Zbl0559.35061
  5. [5] M. Ikawa, Trapping obstacles with a sequence of poles of the scattering matrix converging to the real axis, to appear in Osaka J. Math. Zbl0617.35102
  6. [6] M. Ikawa, Precise informations on the poles of the scattering matrix for two strictly convex obstacles, in preparation. Zbl0637.35068
  7. [7] P.D. Lax and R.S. Phillips, Scattering theory, Academic Press, New York, (1967). Zbl0186.16301
  8. [8] P.D. Lax and R.S. Phillips, A logarithmic bound on the location of the scattering matrix, Arch. Rat. Mech. and Anal., 40 (1971), 268-280. Zbl0216.13002MR45 #5594
  9. [9] G. Lebeau, to appear. 
  10. [10] R. Melrose, Polynomial bound on the distribution of poles in scattering by obstacles, Journées " Equations aux dérivées partielles ", Soc. Math. France, (1984). Zbl0621.35073
  11. [11] V.M. Petkov, Propriétés génériques des rayons réfléchissants et applications aux problèmes spectraux, Séminaire Bony-Sjöstrand-Meyer, 1984-1985, Exposé n° XII. Zbl0597.35092
  12. [12] V.M. Petkov and L. Stojanov, Periods of multiple reflecting geodesics and inverse spectral problems, preprint. Zbl0652.35027

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.