On poles of scattering matrices for several convex bodies

Mitsuru Ikawa

Journées équations aux dérivées partielles (1990)

  • page 1-9
  • ISSN: 0752-0360

How to cite

top

Ikawa, Mitsuru. "On poles of scattering matrices for several convex bodies." Journées équations aux dérivées partielles (1990): 1-9. <http://eudml.org/doc/93221>.

@article{Ikawa1990,
author = {Ikawa, Mitsuru},
journal = {Journées équations aux dérivées partielles},
keywords = {poles of the scattering matrix; geometry of obstacles},
language = {eng},
pages = {1-9},
publisher = {Ecole polytechnique},
title = {On poles of scattering matrices for several convex bodies},
url = {http://eudml.org/doc/93221},
year = {1990},
}

TY - JOUR
AU - Ikawa, Mitsuru
TI - On poles of scattering matrices for several convex bodies
JO - Journées équations aux dérivées partielles
PY - 1990
PB - Ecole polytechnique
SP - 1
EP - 9
LA - eng
KW - poles of the scattering matrix; geometry of obstacles
UR - http://eudml.org/doc/93221
ER -

References

top
  1. 1. C. Bardos, J.C. Guillot and J. Ralston, La relation de Poisson pour l'équation des ondes dans un ouvert non borné. Application à la théorie de la diffusion, Comm. Partial Diff. Equ. 7 (1982), 905-958. Zbl0496.35067MR84d:35120
  2. 2. R. Bowen, “Equilibrium states and the ergodic theory of Anosov differomorphism”, S.L.M., 470, Springer-Verlag, Berlin, 1975. Zbl0308.28010MR56 #1364
  3. 3. C. Gérard, Asymptotique des poles de la matrice de scattering pour deux obstacles strictement convexes, Bull. S.M.F. Tome 116 Mémoire n° 31 (1989). Zbl0654.35081
  4. 4. M. Ikawa, On the poles of the scattering matrix for two strictly convex obstacles, J.Math. Kyoto Univ. 23 (1983), 127-194. Zbl0561.35060MR84e:35118
  5. 5. M. Ikawa, Decay of solutions of the wave equation in the exterior of several convex bodies, Ann. Inst. Fourier 38 (1988), 113-146. Zbl0636.35045MR90a:35028
  6. 6. M. Ikawa, On the existence of poles of the scattering matrix for several convex bodies, Proc. Japan Acad. 64 (1988), 91-93. Zbl0704.35113MR90i:35211
  7. 7. M. Ikawa, Singular perturbation of symbolic flows and poles of the zeta functions, to appear in Osaka J.Math. Zbl0708.58019
  8. 8. M. Ikawa, On the distribution of poles of the scattering matrix for several convex bodies, to appear in Proc. of Conference in Honor of Prof. T. Kato “Functional analysis and its applications”. Zbl0754.35103
  9. 9. M. Ikawa, On the existence of poles of zeta functions for certain symbolic dynamics, in preparation. Zbl0708.58019
  10. 10. P.D. Lax and R.S. Phillips, “Scattering theory, Revised Edition”, Academic Press, New York, 1989. Zbl0697.35004MR90k:35005
  11. 11. R. Melrose, Polynomial bound on the distribution of poles in scattering by an obstacle, Journées Equations aux Dérivées Partielles, St.Jean de Monts (1984). Zbl0621.35073
  12. 12. W. Parry, Bowen's equidistribution theory and the Dirichlet density theorem, Ergod. The. & Dynam. Sys. 4 (1984), 117-134. Zbl0567.58014MR86j:58125
  13. 13. W. Parry and M. Pollicott, An analogue of the prime number theorem for closed orbits of Axiom A flows, Ann.Math. 118 (1983), 537-591. Zbl0537.58038MR85i:58105

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.