On poles of scattering matrices for several convex bodies
Journées équations aux dérivées partielles (1990)
- page 1-9
- ISSN: 0752-0360
Access Full Article
topHow to cite
topIkawa, Mitsuru. "On poles of scattering matrices for several convex bodies." Journées équations aux dérivées partielles (1990): 1-9. <http://eudml.org/doc/93221>.
@article{Ikawa1990,
author = {Ikawa, Mitsuru},
journal = {Journées équations aux dérivées partielles},
keywords = {poles of the scattering matrix; geometry of obstacles},
language = {eng},
pages = {1-9},
publisher = {Ecole polytechnique},
title = {On poles of scattering matrices for several convex bodies},
url = {http://eudml.org/doc/93221},
year = {1990},
}
TY - JOUR
AU - Ikawa, Mitsuru
TI - On poles of scattering matrices for several convex bodies
JO - Journées équations aux dérivées partielles
PY - 1990
PB - Ecole polytechnique
SP - 1
EP - 9
LA - eng
KW - poles of the scattering matrix; geometry of obstacles
UR - http://eudml.org/doc/93221
ER -
References
top- 1. C. Bardos, J.C. Guillot and J. Ralston, La relation de Poisson pour l'équation des ondes dans un ouvert non borné. Application à la théorie de la diffusion, Comm. Partial Diff. Equ. 7 (1982), 905-958. Zbl0496.35067MR84d:35120
- 2. R. Bowen, “Equilibrium states and the ergodic theory of Anosov differomorphism”, S.L.M., 470, Springer-Verlag, Berlin, 1975. Zbl0308.28010MR56 #1364
- 3. C. Gérard, Asymptotique des poles de la matrice de scattering pour deux obstacles strictement convexes, Bull. S.M.F. Tome 116 Mémoire n° 31 (1989). Zbl0654.35081
- 4. M. Ikawa, On the poles of the scattering matrix for two strictly convex obstacles, J.Math. Kyoto Univ. 23 (1983), 127-194. Zbl0561.35060MR84e:35118
- 5. M. Ikawa, Decay of solutions of the wave equation in the exterior of several convex bodies, Ann. Inst. Fourier 38 (1988), 113-146. Zbl0636.35045MR90a:35028
- 6. M. Ikawa, On the existence of poles of the scattering matrix for several convex bodies, Proc. Japan Acad. 64 (1988), 91-93. Zbl0704.35113MR90i:35211
- 7. M. Ikawa, Singular perturbation of symbolic flows and poles of the zeta functions, to appear in Osaka J.Math. Zbl0708.58019
- 8. M. Ikawa, On the distribution of poles of the scattering matrix for several convex bodies, to appear in Proc. of Conference in Honor of Prof. T. Kato “Functional analysis and its applications”. Zbl0754.35103
- 9. M. Ikawa, On the existence of poles of zeta functions for certain symbolic dynamics, in preparation. Zbl0708.58019
- 10. P.D. Lax and R.S. Phillips, “Scattering theory, Revised Edition”, Academic Press, New York, 1989. Zbl0697.35004MR90k:35005
- 11. R. Melrose, Polynomial bound on the distribution of poles in scattering by an obstacle, Journées Equations aux Dérivées Partielles, St.Jean de Monts (1984). Zbl0621.35073
- 12. W. Parry, Bowen's equidistribution theory and the Dirichlet density theorem, Ergod. The. & Dynam. Sys. 4 (1984), 117-134. Zbl0567.58014MR86j:58125
- 13. W. Parry and M. Pollicott, An analogue of the prime number theorem for closed orbits of Axiom A flows, Ann.Math. 118 (1983), 537-591. Zbl0537.58038MR85i:58105
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.