On the distribution of scattering poles for perturbations of the Laplacian
Annales de l'institut Fourier (1992)
- Volume: 42, Issue: 3, page 625-635
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topVodev, Georgi. "On the distribution of scattering poles for perturbations of the Laplacian." Annales de l'institut Fourier 42.3 (1992): 625-635. <http://eudml.org/doc/74967>.
@article{Vodev1992,
abstract = {We consider selfadjoint positively definite operators of the form $- \Delta +P$ (not necessarily elliptic) in $\{\Bbb R\}^ n$, $n\ge 3$, odd, where $P$ is a second-order differential operator with coefficients of compact supports. We show that the number of the scattering poles outside a conic neighbourhood of the real axis admits the same estimates as in the elliptic case. More precisely, if $\lbrace \lambda _ j\rbrace (\operatorname\{Im \}\lambda _ j\ge 0_ )$ are the scattering poles associated to the operator $- \Delta +P$ repeated according to multiplicity, it is proved that for any $\varepsilon >0$ there exists a constant $C_ \varepsilon >0$ so that $\#\lbrace \lambda _ j:\vert \lambda _ j\vert \le r$, $\varepsilon \le \arg \lambda _ j\le \pi -\varepsilon \rbrace \le C_ \varepsilon r^ n$ for any $r\ge 1$.},
author = {Vodev, Georgi},
journal = {Annales de l'institut Fourier},
keywords = {scattering poles; cutoff resolvent},
language = {eng},
number = {3},
pages = {625-635},
publisher = {Association des Annales de l'Institut Fourier},
title = {On the distribution of scattering poles for perturbations of the Laplacian},
url = {http://eudml.org/doc/74967},
volume = {42},
year = {1992},
}
TY - JOUR
AU - Vodev, Georgi
TI - On the distribution of scattering poles for perturbations of the Laplacian
JO - Annales de l'institut Fourier
PY - 1992
PB - Association des Annales de l'Institut Fourier
VL - 42
IS - 3
SP - 625
EP - 635
AB - We consider selfadjoint positively definite operators of the form $- \Delta +P$ (not necessarily elliptic) in ${\Bbb R}^ n$, $n\ge 3$, odd, where $P$ is a second-order differential operator with coefficients of compact supports. We show that the number of the scattering poles outside a conic neighbourhood of the real axis admits the same estimates as in the elliptic case. More precisely, if $\lbrace \lambda _ j\rbrace (\operatorname{Im }\lambda _ j\ge 0_ )$ are the scattering poles associated to the operator $- \Delta +P$ repeated according to multiplicity, it is proved that for any $\varepsilon >0$ there exists a constant $C_ \varepsilon >0$ so that $\#\lbrace \lambda _ j:\vert \lambda _ j\vert \le r$, $\varepsilon \le \arg \lambda _ j\le \pi -\varepsilon \rbrace \le C_ \varepsilon r^ n$ for any $r\ge 1$.
LA - eng
KW - scattering poles; cutoff resolvent
UR - http://eudml.org/doc/74967
ER -
References
top- [1] C. BARDOS, J. GUILOT, J. RALSTON, La relation de Poisson pour l'équation des ondes dans un ouvert non borné. Application à la théorie de la diffusion, Commun. Partial Differ. Equations, 7 (1982), 905-958. Zbl0496.35067
- [2] A. INTISSAR, A polynomial bound on the number of scattering poles for a potential in even dimensional space Rn, Commun. Partial Differ. Equations, 11 (1986), 367-396. Zbl0607.35069MR87j:35286
- [3] P. D. LAX, R. S. PHILLIPS, Scattering Theory, Academic Press, 1967. Zbl0186.16301
- [4] R. B. MELROSE, Polynomial bounds on the number of scattering poles, J. Func. Anal., 53 (1983), 287-303. Zbl0535.35067MR85k:35180
- [5] R. B. MELROSE, Polynomial bounds on the distribution of poles in scattering by an obstacle, Journées "Équations aux dérivées partielles", Saint-Jean-de-Monts (1984). Zbl0621.35073
- [6] R. B. MELROSE, Weyl asymptotics for the phase in obstacle scattering, Commun. Partial Differ. Equations, 13 (1988), 1431-1439. Zbl0686.35089MR90a:35183
- [7] J. SJÖSTRAND, Geometric bounds on the number of resonances for semiclassical problems, Duke Math. J., 60 (1990), 1-57. Zbl0702.35188
- [8] J. SJÖSTRAND, M. ZWORSKI, Complex scaling and the distribution of scattering poles, J. Amer. Math. Soc., (1991), 729-769. Zbl0752.35046MR92g:35166
- [9] E. C. TITCHMARSH, The Theory of Functions, Oxford University Press, 1968. Zbl0005.21004
- [10] B. VAINBERG, Asymptotic Methods in Equations of Mathematical Physics, Gordon and Breach Sci. Publ., 1988. Zbl0743.35001
- [11] G. VODEV, Polynomial bounds on the number of scattering poles for symmetric systems, Ann. Inst. Henri Poincaré (Physique théorique), 54 (1991), 199-208. Zbl0816.35101MR92j:81349
- [12] G. VODEV, Polynomial bounds on the number of scattering poles for metric perturbations of the Laplacian in Rn, n ≥ 3, odd, Osaka J. Math., 28 (1991), 441-449. Zbl0754.35102MR93b:35106
- [13] G. VODEV, Sharp polynomial bounds on the number of scattering poles for metric perturbation of the Laplacian in Rn, Math. Ann., 291 (1991), 39-49. Zbl0754.35105MR93f:47060
- [14] G. VODEV, Sharp bounds on the number of scattering poles for perturbations of the Lapacian, Commun. Math. Phys., 145 (1992), to appear. Zbl0766.35032MR1191913
- [15] M. ZWORSKI, Distribution of poles for scattering in the real line, J. Func. Anal., 73 (1987), 227-296. Zbl0662.34033MR88h:81223
- [16] M. ZWORSKI, Sharp polynomial bounds on the number of scattering poles of radial potentials, J. Func. Anal., 82 (1989), 370-403. Zbl0681.47002MR90d:35233
- [17] M. ZWORSKI, Sharp polynomial bounds on the number of scattering poles, Duke Math. J., 59 (1989), 311-323. Zbl0705.35099MR90h:35190
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.