On the distribution of scattering poles for perturbations of the Laplacian

Georgi Vodev

Annales de l'institut Fourier (1992)

  • Volume: 42, Issue: 3, page 625-635
  • ISSN: 0373-0956

Abstract

top
We consider selfadjoint positively definite operators of the form - Δ + P (not necessarily elliptic) in n , n 3 , odd, where P is a second-order differential operator with coefficients of compact supports. We show that the number of the scattering poles outside a conic neighbourhood of the real axis admits the same estimates as in the elliptic case. More precisely, if { λ j } ( Im λ j 0 ) are the scattering poles associated to the operator - Δ + P repeated according to multiplicity, it is proved that for any ϵ > 0 there exists a constant C ϵ > 0 so that # { λ j : | λ j | r , ϵ arg λ j π - ϵ } C ϵ r n for any r 1 .

How to cite

top

Vodev, Georgi. "On the distribution of scattering poles for perturbations of the Laplacian." Annales de l'institut Fourier 42.3 (1992): 625-635. <http://eudml.org/doc/74967>.

@article{Vodev1992,
abstract = {We consider selfadjoint positively definite operators of the form $- \Delta +P$ (not necessarily elliptic) in $\{\Bbb R\}^ n$, $n\ge 3$, odd, where $P$ is a second-order differential operator with coefficients of compact supports. We show that the number of the scattering poles outside a conic neighbourhood of the real axis admits the same estimates as in the elliptic case. More precisely, if $\lbrace \lambda _ j\rbrace (\operatorname\{Im \}\lambda _ j\ge 0_ )$ are the scattering poles associated to the operator $- \Delta +P$ repeated according to multiplicity, it is proved that for any $\varepsilon &gt;0$ there exists a constant $C_ \varepsilon &gt;0$ so that $\#\lbrace \lambda _ j:\vert \lambda _ j\vert \le r$, $\varepsilon \le \arg \lambda _ j\le \pi -\varepsilon \rbrace \le C_ \varepsilon r^ n$ for any $r\ge 1$.},
author = {Vodev, Georgi},
journal = {Annales de l'institut Fourier},
keywords = {scattering poles; cutoff resolvent},
language = {eng},
number = {3},
pages = {625-635},
publisher = {Association des Annales de l'Institut Fourier},
title = {On the distribution of scattering poles for perturbations of the Laplacian},
url = {http://eudml.org/doc/74967},
volume = {42},
year = {1992},
}

TY - JOUR
AU - Vodev, Georgi
TI - On the distribution of scattering poles for perturbations of the Laplacian
JO - Annales de l'institut Fourier
PY - 1992
PB - Association des Annales de l'Institut Fourier
VL - 42
IS - 3
SP - 625
EP - 635
AB - We consider selfadjoint positively definite operators of the form $- \Delta +P$ (not necessarily elliptic) in ${\Bbb R}^ n$, $n\ge 3$, odd, where $P$ is a second-order differential operator with coefficients of compact supports. We show that the number of the scattering poles outside a conic neighbourhood of the real axis admits the same estimates as in the elliptic case. More precisely, if $\lbrace \lambda _ j\rbrace (\operatorname{Im }\lambda _ j\ge 0_ )$ are the scattering poles associated to the operator $- \Delta +P$ repeated according to multiplicity, it is proved that for any $\varepsilon &gt;0$ there exists a constant $C_ \varepsilon &gt;0$ so that $\#\lbrace \lambda _ j:\vert \lambda _ j\vert \le r$, $\varepsilon \le \arg \lambda _ j\le \pi -\varepsilon \rbrace \le C_ \varepsilon r^ n$ for any $r\ge 1$.
LA - eng
KW - scattering poles; cutoff resolvent
UR - http://eudml.org/doc/74967
ER -

References

top
  1. [1] C. BARDOS, J. GUILOT, J. RALSTON, La relation de Poisson pour l'équation des ondes dans un ouvert non borné. Application à la théorie de la diffusion, Commun. Partial Differ. Equations, 7 (1982), 905-958. Zbl0496.35067
  2. [2] A. INTISSAR, A polynomial bound on the number of scattering poles for a potential in even dimensional space Rn, Commun. Partial Differ. Equations, 11 (1986), 367-396. Zbl0607.35069MR87j:35286
  3. [3] P. D. LAX, R. S. PHILLIPS, Scattering Theory, Academic Press, 1967. Zbl0186.16301
  4. [4] R. B. MELROSE, Polynomial bounds on the number of scattering poles, J. Func. Anal., 53 (1983), 287-303. Zbl0535.35067MR85k:35180
  5. [5] R. B. MELROSE, Polynomial bounds on the distribution of poles in scattering by an obstacle, Journées "Équations aux dérivées partielles", Saint-Jean-de-Monts (1984). Zbl0621.35073
  6. [6] R. B. MELROSE, Weyl asymptotics for the phase in obstacle scattering, Commun. Partial Differ. Equations, 13 (1988), 1431-1439. Zbl0686.35089MR90a:35183
  7. [7] J. SJÖSTRAND, Geometric bounds on the number of resonances for semiclassical problems, Duke Math. J., 60 (1990), 1-57. Zbl0702.35188
  8. [8] J. SJÖSTRAND, M. ZWORSKI, Complex scaling and the distribution of scattering poles, J. Amer. Math. Soc., (1991), 729-769. Zbl0752.35046MR92g:35166
  9. [9] E. C. TITCHMARSH, The Theory of Functions, Oxford University Press, 1968. Zbl0005.21004
  10. [10] B. VAINBERG, Asymptotic Methods in Equations of Mathematical Physics, Gordon and Breach Sci. Publ., 1988. Zbl0743.35001
  11. [11] G. VODEV, Polynomial bounds on the number of scattering poles for symmetric systems, Ann. Inst. Henri Poincaré (Physique théorique), 54 (1991), 199-208. Zbl0816.35101MR92j:81349
  12. [12] G. VODEV, Polynomial bounds on the number of scattering poles for metric perturbations of the Laplacian in Rn, n ≥ 3, odd, Osaka J. Math., 28 (1991), 441-449. Zbl0754.35102MR93b:35106
  13. [13] G. VODEV, Sharp polynomial bounds on the number of scattering poles for metric perturbation of the Laplacian in Rn, Math. Ann., 291 (1991), 39-49. Zbl0754.35105MR93f:47060
  14. [14] G. VODEV, Sharp bounds on the number of scattering poles for perturbations of the Lapacian, Commun. Math. Phys., 145 (1992), to appear. Zbl0766.35032MR1191913
  15. [15] M. ZWORSKI, Distribution of poles for scattering in the real line, J. Func. Anal., 73 (1987), 227-296. Zbl0662.34033MR88h:81223
  16. [16] M. ZWORSKI, Sharp polynomial bounds on the number of scattering poles of radial potentials, J. Func. Anal., 82 (1989), 370-403. Zbl0681.47002MR90d:35233
  17. [17] M. ZWORSKI, Sharp polynomial bounds on the number of scattering poles, Duke Math. J., 59 (1989), 311-323. Zbl0705.35099MR90h:35190

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.