Regularizing estimates for Schrödinger and wave equations

Alberto Ruiz

Journées équations aux dérivées partielles (1993)

  • Volume: 1993, Issue: 5, page 1-12
  • ISSN: 0752-0360

How to cite

top

Ruiz, Alberto. "Regularizing estimates for Schrödinger and wave equations." Journées équations aux dérivées partielles 1993.5 (1993): 1-12. <http://eudml.org/doc/93274>.

@article{Ruiz1993,
author = {Ruiz, Alberto},
journal = {Journées équations aux dérivées partielles},
keywords = {initial value problems; Morrey-Campanato class; weighted estimates},
language = {eng},
number = {5},
pages = {1-12},
publisher = {Ecole polytechnique},
title = {Regularizing estimates for Schrödinger and wave equations},
url = {http://eudml.org/doc/93274},
volume = {1993},
year = {1993},
}

TY - JOUR
AU - Ruiz, Alberto
TI - Regularizing estimates for Schrödinger and wave equations
JO - Journées équations aux dérivées partielles
PY - 1993
PB - Ecole polytechnique
VL - 1993
IS - 5
SP - 1
EP - 12
LA - eng
KW - initial value problems; Morrey-Campanato class; weighted estimates
UR - http://eudml.org/doc/93274
ER -

References

top
  1. [AH] Agmon S., Hörmander L., Asymptotic properties of solutions of differential equations with simple characteristics. J. d'Analyse Mathématique, Vol. 30, 1976, 1-28 Zbl0335.35013MR57 #6776
  2. [ChR] Chiarenza F., Ruiz A., Uniform L2 weighted Sobolev inequalities. Proc. AMS., 112, (1), 1991, 53-64. Zbl0745.35007MR91h:46057
  3. [ChF] Chiarenza, Frasca, A remark on a paper by C. Fefferman. Proc AMS, 1990 Zbl0694.46029
  4. [CS1] Constantin P., Saut J.C., Local smoothing properties of dispersive equations. J. of the AMS, 1, 1988, 413-139. Zbl0667.35061MR89d:35150
  5. [CS2] Constantin P., Saut J.C., Local smoothing properties of Schrödinger equations. Indiana U. Math. J., 38, 3, 1989, 791-810. Zbl0712.35022MR91e:35167
  6. [FP] C. Fefferman, P.Phong, Lower bounds for Schrödinger equations. Journes Eqs. D. P. St. Jean de Monts 1982. Zbl0492.35057
  7. [H] Harmse, J.On Lebesgue space estimates for the wave equation. Indiana University Math Journal 39.1 1990 Zbl0683.35008MR91j:35158
  8. [LP] Lions P.L., Perthame B., Lemmes de moments, de moyenne et de dispersion. C.R. Acad. Sci. Paris, t 314, Série, p. 801-806. 1992. Zbl0761.35085MR93f:35217
  9. [K] Kato T.On the Cauchy problem for the (generalized) KdV equation. Adv. in Math. Supplementary Studies, Studies in Applied Math., 8, 1983, 93-128. Zbl0549.34001MR86f:35160
  10. [KY] Kato T., Yajima K., Some examples of smooth operators and the associated smoothing effect. Review in Math. Physics, 1, 4, 1989. Zbl0833.47005MR91i:47013
  11. [KPV2] Kenig C., Ponce G., Vega L., Small solutions for non linear Schrödinger equations. To appear in Ann. I. Henri Poincaré. Zbl0786.35121
  12. [KRS] Kenig C., Ruiz A., Sogge C., Uniform Sobolev inequalities and unique continuation for second order constant coefficients differential operators. Duke Math. J., 55, 1987, 329-347. Zbl0644.35012MR88d:35037
  13. [RV] Ruiz A., Vega L., Unique continuation for Schrödinger operators with potential in Morrey spaces. Publications Matemátiques, 35, 1991, 291-298. Zbl0809.47046MR92e:35039
  14. [RV2] Ruiz A., Vega L., On local regularity of Schrödinger equations. Int. Math. Research Notices. N 1. 13-27. Duke Math. J. 1993 Zbl0812.35016MR94c:35060
  15. [RV3] Smoothing effect for Schródinger and wave equations. In preparation 
  16. [SSj] Sjögren P., Sjölin P., Convergence properties for the time dependent Schrödinger equation. To appear in Ann. Acad. Sci. Fenn.. Zbl0629.35055
  17. [Sj] Sjölin P., Regularity of solutions to the Schrödinger equations. Duke Math. J., 55, 1987, 699-715. Zbl0631.42010
  18. [So] Soffer A., Phase space analysis of non linear waves and global existence. Preprint. 
  19. [T] Tomas P., A restriction theorem for the Fourier transform. Bull. AMS, 81, 1975, 477-478. Zbl0298.42011MR50 #10681
  20. [V1] Vega L., Schrödinger equations : pointwise convergence to the initial data. Proc. AMS, 102, 1988, 874-878. Zbl0654.42014MR89d:35046
  21. [V2] Vega L., El multiplicador de Schrödinger : la función maximal y los operadores de restricción. Tesis doctoral. Universidad Autónoma de Madrid. 1988. 
  22. [Y] Yajima K., Existence of solutions for Schrödinger Evolution Equations. Comm. Math. Phys., 110 (1987), 415-426. Zbl0638.35036MR88e:35048

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.