On zeta function and scattering poles for several convex bodies

Mitsuru Ikawa

Journées équations aux dérivées partielles (1994)

  • Volume: 1994, page 1-14
  • ISSN: 0752-0360

How to cite

top

Ikawa, Mitsuru. "On zeta function and scattering poles for several convex bodies." Journées équations aux dérivées partielles 1994 (1994): 1-14. <http://eudml.org/doc/93287>.

@article{Ikawa1994,
author = {Ikawa, Mitsuru},
journal = {Journées équations aux dérivées partielles},
keywords = {billiards in ; convex bodies; zeta function; regularity; scattering matrix},
language = {eng},
pages = {1-14},
publisher = {Ecole polytechnique},
title = {On zeta function and scattering poles for several convex bodies},
url = {http://eudml.org/doc/93287},
volume = {1994},
year = {1994},
}

TY - JOUR
AU - Ikawa, Mitsuru
TI - On zeta function and scattering poles for several convex bodies
JO - Journées équations aux dérivées partielles
PY - 1994
PB - Ecole polytechnique
VL - 1994
SP - 1
EP - 14
LA - eng
KW - billiards in ; convex bodies; zeta function; regularity; scattering matrix
UR - http://eudml.org/doc/93287
ER -

References

top
  1. 1. R. Bowen, Equilibrium states and the ergodic theory of Anosov differomorphism, S. L. M., 470, Springer-Verlag, Berlin, 1975. Zbl0308.28010MR56 #1364
  2. 2. N. Haydn, Meromorphic extension of the zeta function for Axiom A flows, Ergod. Th. & Dynam. Sys. 10 (1990), 347-360. Zbl0694.58035MR91g:58219
  3. 3. M. Ikawa, Decay of solutions of the wave equation in the exterior of several convex bodies, Ann. Inst. Fourier 38 (1988), 113-146. Zbl0636.35045MR90a:35028
  4. 4. M. Ikawa, On the existence of poles of the scattering matrix for several convex bodies, Proc. Japan Acad. 64 (1988), 91-93. Zbl0704.35113MR90i:35211
  5. 5. M. Ikawa, Singular perturbation of symbolic flows and poles of the zeta functions, Osaka J. Math. 27 (1990), 281-300. Zbl0708.58019MR91g:58220
  6. 6. P. D. Lax and R. S. Phillips, Scattering theory. Revised edition, Academic Press, New York, 1989. Zbl0697.35004MR90k:35005
  7. 7. W. Parry and M. Pollicott, An analogue of the prime number theorem for closed orbits of Axiom A flows, Ann. Math. 118 (1983), 537-591. Zbl0537.58038MR85i:58105
  8. 8. M. Pollicott, Meromorphic extension of generalized zeta function, Invent. Math. 85 (1986), 147-164. Zbl0604.58042MR87k:58218

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.