On zeta function and scattering poles for several convex bodies
Journées équations aux dérivées partielles (1994)
- Volume: 1994, page 1-14
- ISSN: 0752-0360
Access Full Article
topHow to cite
topIkawa, Mitsuru. "On zeta function and scattering poles for several convex bodies." Journées équations aux dérivées partielles 1994 (1994): 1-14. <http://eudml.org/doc/93287>.
@article{Ikawa1994,
author = {Ikawa, Mitsuru},
journal = {Journées équations aux dérivées partielles},
keywords = {billiards in ; convex bodies; zeta function; regularity; scattering matrix},
language = {eng},
pages = {1-14},
publisher = {Ecole polytechnique},
title = {On zeta function and scattering poles for several convex bodies},
url = {http://eudml.org/doc/93287},
volume = {1994},
year = {1994},
}
TY - JOUR
AU - Ikawa, Mitsuru
TI - On zeta function and scattering poles for several convex bodies
JO - Journées équations aux dérivées partielles
PY - 1994
PB - Ecole polytechnique
VL - 1994
SP - 1
EP - 14
LA - eng
KW - billiards in ; convex bodies; zeta function; regularity; scattering matrix
UR - http://eudml.org/doc/93287
ER -
References
top- 1. R. Bowen, Equilibrium states and the ergodic theory of Anosov differomorphism, S. L. M., 470, Springer-Verlag, Berlin, 1975. Zbl0308.28010MR56 #1364
- 2. N. Haydn, Meromorphic extension of the zeta function for Axiom A flows, Ergod. Th. & Dynam. Sys. 10 (1990), 347-360. Zbl0694.58035MR91g:58219
- 3. M. Ikawa, Decay of solutions of the wave equation in the exterior of several convex bodies, Ann. Inst. Fourier 38 (1988), 113-146. Zbl0636.35045MR90a:35028
- 4. M. Ikawa, On the existence of poles of the scattering matrix for several convex bodies, Proc. Japan Acad. 64 (1988), 91-93. Zbl0704.35113MR90i:35211
- 5. M. Ikawa, Singular perturbation of symbolic flows and poles of the zeta functions, Osaka J. Math. 27 (1990), 281-300. Zbl0708.58019MR91g:58220
- 6. P. D. Lax and R. S. Phillips, Scattering theory. Revised edition, Academic Press, New York, 1989. Zbl0697.35004MR90k:35005
- 7. W. Parry and M. Pollicott, An analogue of the prime number theorem for closed orbits of Axiom A flows, Ann. Math. 118 (1983), 537-591. Zbl0537.58038MR85i:58105
- 8. M. Pollicott, Meromorphic extension of generalized zeta function, Invent. Math. 85 (1986), 147-164. Zbl0604.58042MR87k:58218
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.