Sur la conjecture de Lax et Phillips pour un nombre fini d'obstacles strictement convexes
Séminaire Équations aux dérivées partielles (Polytechnique) (1995-1996)
- page 1-13
Access Full Article
topHow to cite
topPetkov, V.. "Sur la conjecture de Lax et Phillips pour un nombre fini d'obstacles strictement convexes." Séminaire Équations aux dérivées partielles (Polytechnique) (1995-1996): 1-13. <http://eudml.org/doc/112122>.
@article{Petkov1995-1996,
author = {Petkov, V.},
journal = {Séminaire Équations aux dérivées partielles (Polytechnique)},
keywords = {meromorphic function},
language = {fre},
pages = {1-13},
publisher = {Ecole Polytechnique, Centre de Mathématiques},
title = {Sur la conjecture de Lax et Phillips pour un nombre fini d'obstacles strictement convexes},
url = {http://eudml.org/doc/112122},
year = {1995-1996},
}
TY - JOUR
AU - Petkov, V.
TI - Sur la conjecture de Lax et Phillips pour un nombre fini d'obstacles strictement convexes
JO - Séminaire Équations aux dérivées partielles (Polytechnique)
PY - 1995-1996
PB - Ecole Polytechnique, Centre de Mathématiques
SP - 1
EP - 13
LA - fre
KW - meromorphic function
UR - http://eudml.org/doc/112122
ER -
References
top- [BGR] C. Bardos, J.C. Guillot, J. Ralston, La relation de Poisson pour l'équation des ondes dans un ouvert non-borné, Commun. Partial Diff. Equations7 (1982), 905-958. Zbl0496.35067MR668585
- [BL] M. Babillot and F. Ledrappier, Lalley's theorem on periodic orbits of hyperbolic flows, Preprint, Ecole Polytechnique, 1996. Zbl0915.58074
- [Be] V. Bernstein, Leçons sur les progrés récents de la théorie des séries de Dirichlet, Paris, Gauthier-Villards, 1933. Zbl0008.11503
- [Bu] N. Burq, Controle de l'équation des plaques en présence d'obstacles strictement convexes, Suppl. Bull. Soc. Math. France, Mémoire n° 55, 121 (1993), . Zbl0930.93007
- [F1] L. Farhy, Distribution near real axis of the scattering poles generated by a non-hyperbolic ray, Ann. Inst. H. Poincaré (Physique théorique), 60 (1994), 291-302. Zbl0808.35091MR1281648
- [F2] L. Farhy, Lower bounds on the number of scattering poles under lines parallel to the real axis, Commun. Partial Diff. Equations, 20 (1995), 729-740. Zbl0822.35105MR1326904
- [G] C. Gérard, Asymptotique des pôles de la matrice de scattering pour deux obstacles strictement convexes, Bull. de S.M.F., Mémoire n° 31, 116 (1988). Zbl0654.35081MR998698
- [GM] V. Guillemin and R. Melrose, The Poisson summation formula for manifolds with boundary, Adv. in Math.32 (1979), 128-148. Zbl0415.35062MR539531
- [H] N.T. Haydn, Meromorphic extensions of the zeta function for Axiom A flows, Ergod. Th. & Dynam. Sys., 10 (1990), 347-360. Zbl0694.58035MR1062762
- [I1] M. Ikawa, Decay of solutions of the wave equation in the exterior of two convex obstacles, Osaka J. Math.19 (1982), 459-509. Zbl0498.35008MR676233
- [I2] M. Ikawa, Trapping obstacles with a sequence of poles of the scattering matrix converging to the real axis, Osaka J. Math.22 (1985), 657-689. Zbl0617.35102MR815439
- [I3] M. Ikawa, Decay of solutions of the wave equation in the exterior of several strictly convex bodies, Ann. Inst. Fourier38 (1988), 113-146. Zbl0636.35045MR949013
- [I4] M. Ikawa, On the existence of the poles of the scattering matrix for several convex obstacles, Proc. Japan Acad., Ser. A, 64 (1988), 69-102. Zbl0637.35068
- [I5] M. Ikawa, On the distribution of poles of the scattering matrix for several convex bodies, pp. 210-225 in Lecture Notes in Mathematics, vol. 1450, Springer, Berlin, 1990. Zbl0754.35103MR1084611
- [I6] M. Ikawa, Singular perturbation of symbolic flows and poles of the zeta function, Osaka J. Math.27 (1990), 281-300 and 29 (1992), 161-174. Zbl0708.58019MR1066627
- [I7] M. Ikawa, On Zeta function and scattering poles for several convex bodies, Exposé II, Journées Equtions aux Dérivées Partielles, Saint-Jean-de-Monts, Juin 1994. Zbl0872.58048MR1298673
- [LP] P. Lax and R. Phillips, Scattering Theory, New York, Academic Press1967. Zbl0186.16301MR217440
- [M1] R. Melrose, Polynomial bound on number of scattering poles, J. Funct. Anal., 53 (1983), 29-40. Zbl0535.35067MR724031
- [M2] R. Melrose, Polynomial bound on the distribution of poles in scattering by an obstacle, Journées Equations aux Dérivées Partielles, Saint-Jean-de-Monts, 1984. Zbl0621.35073
- [MS] R. Melrose and J. Sjöstrand, Singularities in boundary value problems, I, II. Comm. Pure Appl. Math.31 (1978), 593-617 and 35 (1982), 129-168. Zbl0546.35083
- [PP] W. Parry and M. Pollicott, Zeta functions and periodic orbits structure of hyperbolic dynamics, Astérique, 187-188, Soc. Math. de France, 1990. Zbl0726.58003MR1085356
- [PS1] V. Petkov and L. Stoyanov, Periods of multiple reflecting geodesics and inverse spectal results, Amer. J. Math.109 (1987), 617-668. Zbl0652.35027MR900034
- [PS2] V. Petkov and L. Stoyanov, Geometry of Reflecting Rays and Inverse Spectral Problems, Chichester, John Wiley & Sons1992. Zbl0761.35077MR1172998
- [PV] V. Petkovand G. Vodev, Upper bound on the number of the scattering poles and the Lax-Phillips conjecture, Asymptotic Analysis7 (1993), 97-104. Zbl0801.35099MR1225440
- [Po] M. Pollicott, Meromorphic extensions of generalized zeta functions, Invent. Math.85 (1986), 147-164. Zbl0604.58042MR842051
- [SjZ1] J. Sjötrand and M. Zworski, Complex scaling and the distribution of scattering poles, J. Amer. Math. Soc.4 (1991), 729-769. Zbl0752.35046MR1115789
- [SjZ2] J. Sjöstrand and M. Zworski, Lower bounds on the number of scattering poles, Commun. Partial Diff. Equations18 (1993), 847-857. Zbl0784.35070MR1218521
- [Ste] Pl. Stefanov, Stability of the resonances under smooth perturbations of the boundary, Asymptotic Analysis, 9 (1994), 291-296. Zbl0814.35022MR1295296
- [St1] L. Stoyanov, Poisson relation for the scattering kernel and inverse scattering by obstacles, Séminaire EDP, Exposé V, Ecole Polytechnique, 1994-1995. Zbl0888.58070MR1362553
- [St2] L. Stoyanov, Exponential instability for a class of dispersing billiards, Preprint, Mathematics Department, University of Western Australia, 1995. Zbl0923.58028MR1677157
- [St3] L. Stoyanov, Generalized Hamiltonian flow and rigidity of the scattering length spectrum, Preprint, Mathematics Department, University of Western Australia, 1996.
- [Va] B. Vainberg, Asymptotic Methods of Mathematical Physics, Gordon and Breach Sci. Publ.New York, 1988. Zbl0743.35001
- [Vo1] G. Vodev, Sharp bounds on the number of scattering poles for perturbations of the Laplacian, Comm. Math. Phys.146 (1992), 205-216. Zbl0766.35032MR1163673
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.