On exponential decay of solutions of Schrödinger and Dirac equations: bounds of eigenfunctions corresponding to energies in the gaps of essential spectrum

Gheorghe Nenciu

Journées équations aux dérivées partielles (1994)

  • Volume: 1994, page 1-10
  • ISSN: 0752-0360

How to cite

top

Nenciu, Gheorghe. "On exponential decay of solutions of Schrödinger and Dirac equations: bounds of eigenfunctions corresponding to energies in the gaps of essential spectrum." Journées équations aux dérivées partielles 1994 (1994): 1-10. <http://eudml.org/doc/93292>.

@article{Nenciu1994,
author = {Nenciu, Gheorghe},
journal = {Journées équations aux dérivées partielles},
language = {eng},
pages = {1-10},
publisher = {Ecole polytechnique},
title = {On exponential decay of solutions of Schrödinger and Dirac equations: bounds of eigenfunctions corresponding to energies in the gaps of essential spectrum},
url = {http://eudml.org/doc/93292},
volume = {1994},
year = {1994},
}

TY - JOUR
AU - Nenciu, Gheorghe
TI - On exponential decay of solutions of Schrödinger and Dirac equations: bounds of eigenfunctions corresponding to energies in the gaps of essential spectrum
JO - Journées équations aux dérivées partielles
PY - 1994
PB - Ecole polytechnique
VL - 1994
SP - 1
EP - 10
LA - eng
UR - http://eudml.org/doc/93292
ER -

References

top
  1. [A] S. Agmon, Lecture on Exponential decay of Solutions of Second Order Elliptic Equations : Bounds on Eigenfunctions of N- body Schrödinger Operators, Princeton, Princeton University Press, 1982. Zbl0503.35001
  2. [BG] A. Berthier-(Boutet de Monvel) and V. Georgescu, On the point spectrum of Dirac operators, J. Funct. Analysis 71, 309-338 (1987). Zbl0655.47043MR89b:35131
  3. [BNN] A. Boutet de Monvel, A. Nenciu and G. Nenciu, Perturbed periodic hamiltonians : essential spectrum and exponential decay of solutians, submitted to Lett. in Math. Phys. Zbl0848.35103
  4. [BCD] Ch. Briet, J.-M. Combes and P. Duclos, Spectral stability under tunneling, Comm. Math. Phys. 126, 133 (1989) Zbl0702.35189MR91e:35154
  5. [C] U. Carlson, An infinite number of wells in the semiclasical limit, Asymp. Analysis 3, 189-214 (1989). Zbl0727.35094
  6. [CT] J.-M. Combes and L. Thomas, Asymptotic behaviour of eigenfunctions for multiparticle Schrödinger operators, Commun. Math. Phys. 34, 251-270 (1973). Zbl0271.35062MR52 #12611
  7. [CFKS] H. Cycon, R. Froese, W. Kirsch and B. Simon, Schrödinger operators, Berlin, Springer 1987. Zbl0619.47005
  8. [D] F. Daumer, Equation de Schrödinger dans l'aproximation du tightbinding, Thse, Universit de Nantes, 1990. 
  9. [FH3O2] R. Froese, I. Herbst, M. Hoffmann-Ostenhof and T. Hoffmann-Ostenhof, L2-exponential lower bounds to solutions of the Schrödinger equation, Commun. Math. Phys. 87, 265-268 (1982). Zbl0514.35024MR84c:35034
  10. [GT] D. Gilbarg and N. Trudinger, Elliptic Partial Differential equations of Second Order, 2nd edition, New York, Springer 1983. Zbl0562.35001MR86c:35035
  11. [HN] B. Helffer and J. Nourrigat, Decroisance a l'infini des functions propres de l'operator de Schrödinger avec champ electromagnetique polynomial, J. d'Analyse Math. 58, 263-275 (1992). Zbl0814.35080MR95e:35049
  12. [HS1] B. Helffer and J. Sjostrand, Multiple wells in the semiclassical limit, Commun. PDE 9, 337-408 (1984). Zbl0546.35053MR86c:35113
  13. [HS2] B. Helffer and J. Sjostrand, Multiple wells in the semi-classical limit III. Interactions through non-resonant wells, Math. Nacht. 124, 263-313 (1985). Zbl0597.35023MR87i:35161
  14. [HS3] B. Helffer and J. Sjostrand, Effect tunnel pour l'equation de Schrödinger avec champ magnetique, Annali Scuola Normale Sup. Pisa 14, 625-657 (1987). Zbl0699.35205MR91c:35043
  15. [H1] I. Herbst, Lower bounds in cones for solutions to the Schrödinger equation, J. d'Analyse Math. 47, 151-174 (1986). Zbl0627.35022MR88c:35044
  16. [H2] I. Herbst, Perturbation theory for the decay rate of eigenfunctions in the generalised N-body problem, Commun. Math. Phys. 158, 517-536 (1993). Zbl0819.35105MR95e:81244
  17. [MP] A. Mohamed and B. Parrise, Approximation des valeurs propres de certaines perturbations singuliers et applications a l'operator de Dirac, Ann. Inst. Henri Poincar 56, 235-277 (1992). Zbl0755.35106
  18. [RS] M. Reed and B. Simon, Methods of Modern Mathematical Physics IV : Analysis of Operators, New York, Academic 1978. Zbl0401.47001MR58 #12429c
  19. [W] X. P. Wang, Puits multiples pour l'operator de Dirac, Ann. Inst. Henri Poincar 43, 269-319 (1985). Zbl0614.35074

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.