Effet tunnel pour l'équation de Schrödinger avec champ magnétique

B. Helffer; J. Sjöstrand

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (1987)

  • Volume: 14, Issue: 4, page 625-657
  • ISSN: 0391-173X

How to cite


Helffer, B., and Sjöstrand, J.. "Effet tunnel pour l'équation de Schrödinger avec champ magnétique." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 14.4 (1987): 625-657. <http://eudml.org/doc/84021>.

author = {Helffer, B., Sjöstrand, J.},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
keywords = {Schrödinger equation; magnetic field; tunnel effect},
language = {fre},
number = {4},
pages = {625-657},
publisher = {Scuola normale superiore},
title = {Effet tunnel pour l'équation de Schrödinger avec champ magnétique},
url = {http://eudml.org/doc/84021},
volume = {14},
year = {1987},

AU - Helffer, B.
AU - Sjöstrand, J.
TI - Effet tunnel pour l'équation de Schrödinger avec champ magnétique
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 1987
PB - Scuola normale superiore
VL - 14
IS - 4
SP - 625
EP - 657
LA - fre
KW - Schrödinger equation; magnetic field; tunnel effect
UR - http://eudml.org/doc/84021
ER -


  1. [AH - BO] Y. Aharonov - D. Bohm, Significance of Electromagnetic Potentials in the Quantum Theory. The Physical Review vol. 115 (3), Aug. 1959. Zbl0099.43102MR110458
  2. [A - H - S] J. Avron - I. Herbst - B. Simon, Schrödinger Operators with Magnetic Fields. 
  3. [1] General Interactions. Duke Math. J. vol.45 (4), Déc. 1978. 
  4. [2] Separation of Center of Mass in Homogeneous Magnetic Fields. Ann. Physics114, pp. 431-451 (1978). Zbl0409.35027MR507741
  5. [3] Atoms in Homogeneous Magnetic Fields. Comm. Math. Phys. 79 pp. 529-572 (1981). Zbl0464.35086MR623966
  6. [C - S - S] J-M. Combes - R. Schrader - R. Seiler, Classical Bounds and Limits for Energy Distributions of Hamilton Operators in Electromagnetic Fields. Ann. Physics111, pp. 1-18 (1978). MR489509
  7. [HE] B. Helffer, An introduction to Semi Classical Analysis for the Schrôdinger Operator. Cours en Chine. (A paraître Lecture Notes in Mathematics1988). 
  8. [HE - RO] B. Helffer - D. Robert, Calcul Fonctionnel Admissible et Applications. J. Funct. Anal.53 (3) (1983), pp. 246-268. Zbl0524.35103MR724029
  9. [HE - SJ] B. Helffer - J. Sjöstrand, Multiple Wells in the Semi-Classical Limit Zbl0546.35053
  10. [1] Comm. in P.D.E., 9 (4) (1984), pp. 337-408. MR740094
  11. [2] Interaction Moléculaire, Symétries, perturbation: Ann. Inst. H. Poincaré, vol. 42 (2) (1985), pp. 127-212. Zbl0595.35031MR798695
  12. [HE - MA - RO] B. Helffer - A. Martinez - D. Robert, Ergodicité et Limite Semiclassique (Comm. Math. Phys.). Zbl0624.58039
  13. [HO] L. Hörmander, The Analysis of Linear Partial Differential Equations. Tome 3, Chap. XXII - Springer. 
  14. [HU] W. Hunziker, Schrôdinger Operators with Electric or Magnetic Fields. Proc. Int. Conf. in Math. Phys., Lausanne (1980). Zbl0471.47010MR582602
  15. [IV] I.V. Ivrii - Note au C.R.A.S.1986, 302 Sér I (13), pp. 467-471. MR838401
  16. [KA] T. Kato: [1] Israel J. Math.13 (1972) pp. 125-174. MR333833
  17. [2] Perturbation Theory for Linear Operators. Grundlehren der Mathematischen Wissenschaften132. Springer Verlag. Zbl0531.47014
  18. [ME - SJ] A. Menikoff - J. Sjöstrand.On the Eigenvalues of a class of hypoelliptic Operators. Math. Ann.235, pp. 55-85 (1978). Zbl0375.35014MR481627
  19. [MO] A. Mohamed. 
  20. [SI] B. Simon: [1] Indiana Univ. Math. J.26, pp. 1067-1073 (1977). Zbl0389.47021MR461209
  21. [2] Semi-Classical Analysis of Low Lying Eingenvalues I. Ann. Inst. H. Poincaré t.38 (1983), pp. 295-307. 
  22. [3] Semi-Classical Analysis of Low Lying Eingenvalues II. Tunneling. Ann. of Math. (1984) vol. 20, pp. 89-118. Zbl0626.35070
  23. [SJ] J. Sjöstrand: [1] Singularités analytiques microlocales - Astérisque95 (1982). Zbl0524.35007MR699623
  24. [2] Analytic Wave front Sets and Operators with Multiple CharacteristicsHokkaido Math. Journal Vol. XII (3), pp. 392-433. Zbl0531.35022
  25. [WI] M. Wilkinson, Narrowly avoided crossings Preprint April 1986. 

Citations in EuDML Documents

  1. Philippe Kerdelhué, Équation de Schrödinger en dimension 2, avec potentiel et champ magnétique périodiques. Cas d'un réseau triangulaire de puits
  2. Gheorghe Nenciu, On exponential decay of solutions of Schrödinger and Dirac equations: bounds of eigenfunctions corresponding to energies in the gaps of essential spectrum
  3. B. Helffer, J. Sjöstrand, Semi-classical analysis for Harper's equation. III : Cantor structure of the spectrum
  4. Huirong Pi, Chunhua Wang, Multi-bump solutions for nonlinear Schrödinger equations with electromagnetic fields
  5. Bernard Helffer, Bouteilles magnétiques et supraconductivité
  6. Philippe Kerdelhué, Spectre de l'opérateur de Schrödinger magnétique avec symétrie d'ordre six
  7. Philippe Kerdelhue, Équation de Schrödinger magnétique périodique avec symétrie d'ordre six : mesure du spectre II
  8. Soeren Fournais, Bernard Helffer, Accurate eigenvalue asymptotics for the magnetic Neumann Laplacian

NotesEmbed ?


You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.


Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.