Rectifiability of defect measures, fundamental groups and density of Sobolev mappings
Journées équations aux dérivées partielles (1996)
- Volume: 1996, page 1-14
- ISSN: 0752-0360
Access Full Article
topHow to cite
topLin, Fang Hua. "Rectifiability of defect measures, fundamental groups and density of Sobolev mappings." Journées équations aux dérivées partielles 1996 (1996): 1-14. <http://eudml.org/doc/93319>.
@article{Lin1996,
author = {Lin, Fang Hua},
journal = {Journées équations aux dérivées partielles},
keywords = {-harmonic map; Hausdorff dimension; Radon measure},
language = {eng},
pages = {1-14},
publisher = {Ecole polytechnique},
title = {Rectifiability of defect measures, fundamental groups and density of Sobolev mappings},
url = {http://eudml.org/doc/93319},
volume = {1996},
year = {1996},
}
TY - JOUR
AU - Lin, Fang Hua
TI - Rectifiability of defect measures, fundamental groups and density of Sobolev mappings
JO - Journées équations aux dérivées partielles
PY - 1996
PB - Ecole polytechnique
VL - 1996
SP - 1
EP - 14
LA - eng
KW - -harmonic map; Hausdorff dimension; Radon measure
UR - http://eudml.org/doc/93319
ER -
References
top- [AL] F. Almgren, and E. Lieb, Singularities of energy minimizing maps from the ball to the sphere : examples, counterexamples, and bounds. Annals of Math. (2) 128, 1988, no. 3, 483-530. Zbl0673.58013MR91a:58049
- [B] F. Bethuel, The approximation problem for Sobolev maps between two manifolds, Acta Math. 167, 1991, 153-206. Zbl0756.46017MR92f:58023
- [B2] F. Bethuel, A Characterization of maps in H1 (B3, S2) which can be approximated by smooth maps, Ann. Inst. H. Poincaré, Anal. Nonlineaire 7, 1990, 4, 269-286. Zbl0708.58004MR91f:58013
- [BCDH] F. Bethuel, J. M. Coron, F. Demengel, and F. Helein, A cohomological criterion for density of smooth maps in Sobolev spaces between two manifolds, Nematics Zbl0735.46017
- F. Bethuel, J. M. Coron, F. Demengel, and F. Helein, ed. by J. M. Coron et al., NATO ASI Series, Kluwer Academic Publishers, 1990.
- [Bu] F. Burstal, Harmonic maps of finite energy from noncompact manifolds, J. London Math. Soc. 30, 1984, 361-370. Zbl0622.58008MR86c:58033
- [BBC] F. Bethuel, H. Brezis, and J. M. Coron, Relaxed energies for harmonic maps, Variational Methods, 1988, 37-52, Birkhauser, Boston, MA, 1990. Zbl0793.58011
- [CG] J. M. Coron, and R. Gulliver, Minimizing p-harmonic maps into spheres, J. Reine Angrew Math. 401, 1989, 82-100. Zbl0677.58021MR90m:58040
- [GMS] M. Giaquinta, L. Modica, and J. Souček, The Dirichlet energy of mappings with values into the sphere, Manuscripta Math. 65, 1989, 4, 489-507. Zbl0678.49006MR90i:49053
- [GMS2] M. Giaquinta, The gap phenomenon for variational integrals in Sobolev spaces, preprint 1991. Zbl0749.58019
- [HL] R. Hardt, and F. H. Lin, Mapping minimizing the Lp-norm of the gradient, Comm. Pure and Appl. Math. 40, 1987, 555-588. Zbl0646.49007MR88k:58026
- [HL2] R. Hardt, and F. H. Lin, A remark on H1-mappings, Manuscripta Math. 56, 1986, no. 1, 1-10. Zbl0618.58015MR87k:58068
- [HLP] R. Hardt, F. H. Lin, and C. C. Poon, Axially symmetric harmonic maps minimizing a relaxed energy, Comm. Pure and Appl. Math. 45, 1992, 417-459. Zbl0769.58012MR93c:58054
- [L] F. H. Lin, Rectifiability of defect measures, fundamental groups and density of Sobolev maps, preprint. Zbl0871.35028
- [P] D. Preiss, Geometry of measures in ℝn : distribution, rectifiability, and densities, Ann. of Math. (2) 125, 1987, 537-643. Zbl0627.28008MR88d:28008
- [SU] R. Schoen, and K. Uhlenbeck, A regularity theory for harmonic maps. J. Diff. Geom. 17, 1982, 307-335. Zbl0521.58021MR84b:58037a
- [SU2] R. Schoen, and K. Uhlenbeck, Approximation theorems for Sobolev mappings, preprint, 1984.
- [SY] R. Schoen, and S. T. Yau, The existence of incompressible minimal surfaces and topology of three-dimensional manifolds with non-negative scalar curvature, Ann. of Math. 110, 1979, 127-142. Zbl0431.53051MR81k:58029
- [W] B. White, Homotopy classes in Sobolev spaces and existence of energy mminimizing maps, Acta Math. 160, 1988, 1-17. Zbl0647.58016MR89a:58031
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.