Uniform estimates for the parabolic Ginzburg–Landau equation

F. Bethuel; G. Orlandi

ESAIM: Control, Optimisation and Calculus of Variations (2002)

  • Volume: 8, page 219-238
  • ISSN: 1292-8119

Abstract

top
We consider complex-valued solutions u ε of the Ginzburg–Landau equation on a smooth bounded simply connected domain Ω of N , N 2 , where ε > 0 is a small parameter. We assume that the Ginzburg–Landau energy E ε ( u ε ) verifies the bound (natural in the context) E ε ( u ε ) M 0 | log ε | , where M 0 is some given constant. We also make several assumptions on the boundary data. An important step in the asymptotic analysis of u ε , as ε 0 , is to establish uniform L p bounds for the gradient, for some p > 1 . We review some recent techniques developed in the elliptic case in [7], discuss some variants, and extend the methods to the associated parabolic equation.

How to cite

top

Bethuel, F., and Orlandi, G.. "Uniform estimates for the parabolic Ginzburg–Landau equation." ESAIM: Control, Optimisation and Calculus of Variations 8 (2002): 219-238. <http://eudml.org/doc/246070>.

@article{Bethuel2002,
abstract = {We consider complex-valued solutions $u_\varepsilon $ of the Ginzburg–Landau equation on a smooth bounded simply connected domain $\Omega $ of $\mathbb \{R\}^N$, $N \ge 2$, where $\varepsilon &gt; 0$ is a small parameter. We assume that the Ginzburg–Landau energy $E_\varepsilon (u_\varepsilon )$ verifies the bound (natural in the context) $E_\varepsilon (u_\varepsilon )\le M_0|\log \varepsilon |$, where $M_0$ is some given constant. We also make several assumptions on the boundary data. An important step in the asymptotic analysis of $u_\varepsilon $, as $\varepsilon \rightarrow 0$, is to establish uniform $L^p$ bounds for the gradient, for some $p&gt;1$. We review some recent techniques developed in the elliptic case in [7], discuss some variants, and extend the methods to the associated parabolic equation.},
author = {Bethuel, F., Orlandi, G.},
journal = {ESAIM: Control, Optimisation and Calculus of Variations},
keywords = {Ginzburg–Landau; parabolic equations; Hodge–de Rham decomposition; jacobians; Hodge-de Rham decomposition; Jacobians},
language = {eng},
pages = {219-238},
publisher = {EDP-Sciences},
title = {Uniform estimates for the parabolic Ginzburg–Landau equation},
url = {http://eudml.org/doc/246070},
volume = {8},
year = {2002},
}

TY - JOUR
AU - Bethuel, F.
AU - Orlandi, G.
TI - Uniform estimates for the parabolic Ginzburg–Landau equation
JO - ESAIM: Control, Optimisation and Calculus of Variations
PY - 2002
PB - EDP-Sciences
VL - 8
SP - 219
EP - 238
AB - We consider complex-valued solutions $u_\varepsilon $ of the Ginzburg–Landau equation on a smooth bounded simply connected domain $\Omega $ of $\mathbb {R}^N$, $N \ge 2$, where $\varepsilon &gt; 0$ is a small parameter. We assume that the Ginzburg–Landau energy $E_\varepsilon (u_\varepsilon )$ verifies the bound (natural in the context) $E_\varepsilon (u_\varepsilon )\le M_0|\log \varepsilon |$, where $M_0$ is some given constant. We also make several assumptions on the boundary data. An important step in the asymptotic analysis of $u_\varepsilon $, as $\varepsilon \rightarrow 0$, is to establish uniform $L^p$ bounds for the gradient, for some $p&gt;1$. We review some recent techniques developed in the elliptic case in [7], discuss some variants, and extend the methods to the associated parabolic equation.
LA - eng
KW - Ginzburg–Landau; parabolic equations; Hodge–de Rham decomposition; jacobians; Hodge-de Rham decomposition; Jacobians
UR - http://eudml.org/doc/246070
ER -

References

top
  1. [1] G. Alberti, S. Baldo and G. Orlandi, Variational convergence for functionals of Ginzburg–Landau type. Preprint (2001). Zbl1160.35013
  2. [2] L. Almeida, S. Baldo, F. Bethuel and G. Orlandi (in preparation). 
  3. [3] L. Almeida and F. Bethuel, Topological methods for the Ginzburg–Landau equation. J. Math. Pures Appl. 11 (1998) 1-49. Zbl0904.35023
  4. [4] L. Ambrosio and H.M. Soner, A measure theoretic approach to higher codimension mean curvature flow. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 25 (1997) 27-49. Zbl1043.35136MR1655508
  5. [5] P. Baumann, C.-N. Chen, D. Phillips and P. Sternberg, Vortex annihilation in nonlinear heat flow for Ginzburg–Landau systems. Eur. J. Appl. Math. 6 (1995) 115-126. Zbl0845.35042
  6. [6] F. Bethuel, Variational methods for Ginzburg–Landau equations, in Calculus of Variations and Geometric evolution problems, Cetraro 1996, edited by S. Hildebrandt and M. Struwe. Springer (1999). Zbl0940.35073
  7. [7] F. Bethuel, J. Bourgain, H. Brezis and G. Orlandi, W 1 , p estimates for solutions to the Ginzburg–Landau equation with boundary data in H 1 / 2 . C. R. Acad. Sci. Paris Sér. I Math. 333 (2001) 1069-1076. Zbl1080.35020
  8. [8] F. Bethuel, H. Brezis and F. Hélein, Asymptotics for the minimization of a Ginzburg–Landau functional. Calc. Var. Partial Differential Equations 1 (1993) 123-148. Zbl0834.35014
  9. [9] F. Bethuel, H. Brezis and F. Hélein, Ginzburg–Landau Vortices. Birkhäuser, Boston (1994). Zbl0802.35142
  10. [10] F. Bethuel, H. Brezis and G. Orlandi, Small energy solutions to the Ginzburg–Landau equation. C. R. Acad. Sci. Paris Sér. I Math. 331 (2000) 763-770. Zbl0969.35055
  11. [11] F. Bethuel, H. Brezis and G. Orlandi, Asymptotics for the Ginzburg–Landau equation in arbitrary dimensions. J. Funct. Anal. 186 (2001) 432-520. Erratum (to appear). Zbl1077.35047
  12. [12] F. Bethuel and T. Rivière, Vortices for a variational problem related to superconductivity. Ann. Inst. H. Poincaré Anal. Non Linéaire 12 (1995) 243-303. Zbl0842.35119MR1340265
  13. [13] J. Bourgain, H. Brezis and P. Mironescu, Lifting in Sobolev spaces. J. Anal. 80 (2000) 37-86. Zbl0967.46026MR1771523
  14. [14] J. Bourgain, H. Brezis and P. Mironescu, On the structure of the Sobolev space H 1 / 2 with values into the circle. C. R. Acad. Sci. Paris Sér. I Math. 331 (2000) 119-124. Zbl0970.35069MR1781527
  15. [15] H. Brezis and P. Mironescu, Sur une conjecture de E. De Giorgi relative à l’énergie de Ginzburg–Landau. C. R. Acad. Sci. Paris Sér. I Math. 319 (1994) 167-170. Zbl0805.49004
  16. [16] H. Federer, Geometric Measure Theory. Springer, Berlin (1969). Zbl0176.00801MR257325
  17. [17] Z.C. Han and I. Shafrir, Lower bounds for the energy of S 1 -valued maps in perforated domains. J. Anal. Math. 66 (1995) 295-305. Zbl0852.49028MR1370354
  18. [18] R. Hardt and F.H. Lin, Mappings minimizing the L p -norm of the gradient. Comm. Pure Appl. Math. 40 (1987) 555-588. Zbl0646.49007MR896767
  19. [19] R. Jerrard, Lower bounds for generalized Ginzburg–Landau functionals. SIAM J. Math. Anal. 30 (1999) 721-746. Zbl0928.35045
  20. [20] R. Jerrard and H.M. Soner, Dynamics of Ginzburg–Landau vortices. Arch. Rational Mech. Anal. 142 (1998) 99-125. Zbl0923.35167
  21. [21] R. Jerrard and H.M. Soner, Scaling limits and regularity results for a class of Ginzburg–Landau systems. Ann. Inst. H. Poincaré Anal. Non Linéaire 16 (1999) 423-466. Zbl0944.35006
  22. [22] R. Jerrard and H.M. Soner, The Jacobian and the Ginzburg–Landau energy. Calc. Var. Partial Differential Equations (to appear). Zbl1034.35025
  23. [23] F.H. Lin, Some dynamical properties of Ginzburg–Landau vortices. Comm. Pure Appl. Math. 49 (1996) 323-359. Zbl0853.35058
  24. [24] F.H. Lin, Complex Ginzburg–Landau equations and dynamics of vortices, filaments, and codimension- 2 submanifolds. Comm. Pure Appl. Math. 51 (1998) 385-441 Zbl0932.35121
  25. [25] F.H. Lin, Rectifiability of defect measures, fundamental groups and density of Sobolev mappings, in Journées “Équations aux Dérivées Partielles”, Saint-Jean-de-Monts, 1996, Exp. No. XII. École Polytechnique, Palaiseau (1996). Zbl0871.35028
  26. [26] F.H. Lin and T. Rivière, Complex Ginzburg–Landau equations in high dimensions and codimension two area minimizing currents. J. Eur. Math. Soc. 1 (1999) 237-311. Erratum, Ibid. Zbl0939.35056
  27. [27] F.H. Lin and T. Rivière, A quantization property for static Ginzburg–Landau vortices. Comm. Pure Appl. Math. 54 (2001) 206-228. Zbl1033.58013
  28. [28] F.H. Lin and T. Rivière, A quantization property for moving line vortices. Comm. Pure Appl. Math. 54 (2001) 826-850. Zbl1029.35127MR1823421
  29. [29] L. Modica, The gradient theory of phase transitions and the minimal interface criterion. Arch. Rational Mech. Anal. 98 (1987) 123-142. Zbl0616.76004MR866718
  30. [30] L. Modica and S. Mortola, Un esempio di Γ -convergenza. Boll. Un. Mat. Ital. B 14 (1977) 285-299. Zbl0356.49008MR445362
  31. [31] T. Rivière, Line vortices in the U ( 1 ) -Higgs model. ESAIM: COCV 1 (1996) 77-167. Zbl0874.53019MR1394302
  32. [32] T. Rivière, Dense subsets of H 1 / 2 ( S 2 , S 1 ) . Ann. Global Anal. Geom. 18 (2000) 517-528. Zbl0960.35022MR1790711
  33. [33] T. Rivière, Asymptotic analysis for the Ginzburg–Landau Equation. Boll. Un. Mat. Ital. B 8 (1999) 537-575. Zbl0939.35199
  34. [34] E. Sandier, Lower bounds for the energy of unit vector fields and applications. J. Funct. Anal. 152 (1997) 379-403; Erratum 171 (2000) 233. Zbl0908.58004MR1607928
  35. [35] L. Simon, Lectures on Geometric Measure Theory, in Proc. of the Centre for Math. Analysis. Australian Nat. Univ., Canberra (1983). Zbl0546.49019MR756417
  36. [36] M. Struwe, On the asymptotic behavior of the Ginzburg–Landau model in 2 dimensions. J. Differential Equations 7 (1994) 1613-1624; Erratum 8 (1995) 224. Zbl0809.35031

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.