Uniform estimates for the parabolic Ginzburg–Landau equation
ESAIM: Control, Optimisation and Calculus of Variations (2002)
- Volume: 8, page 219-238
- ISSN: 1292-8119
Access Full Article
topAbstract
topHow to cite
topBethuel, F., and Orlandi, G.. "Uniform estimates for the parabolic Ginzburg–Landau equation." ESAIM: Control, Optimisation and Calculus of Variations 8 (2002): 219-238. <http://eudml.org/doc/246070>.
@article{Bethuel2002,
abstract = {We consider complex-valued solutions $u_\varepsilon $ of the Ginzburg–Landau equation on a smooth bounded simply connected domain $\Omega $ of $\mathbb \{R\}^N$, $N \ge 2$, where $\varepsilon > 0$ is a small parameter. We assume that the Ginzburg–Landau energy $E_\varepsilon (u_\varepsilon )$ verifies the bound (natural in the context) $E_\varepsilon (u_\varepsilon )\le M_0|\log \varepsilon |$, where $M_0$ is some given constant. We also make several assumptions on the boundary data. An important step in the asymptotic analysis of $u_\varepsilon $, as $\varepsilon \rightarrow 0$, is to establish uniform $L^p$ bounds for the gradient, for some $p>1$. We review some recent techniques developed in the elliptic case in [7], discuss some variants, and extend the methods to the associated parabolic equation.},
author = {Bethuel, F., Orlandi, G.},
journal = {ESAIM: Control, Optimisation and Calculus of Variations},
keywords = {Ginzburg–Landau; parabolic equations; Hodge–de Rham decomposition; jacobians; Hodge-de Rham decomposition; Jacobians},
language = {eng},
pages = {219-238},
publisher = {EDP-Sciences},
title = {Uniform estimates for the parabolic Ginzburg–Landau equation},
url = {http://eudml.org/doc/246070},
volume = {8},
year = {2002},
}
TY - JOUR
AU - Bethuel, F.
AU - Orlandi, G.
TI - Uniform estimates for the parabolic Ginzburg–Landau equation
JO - ESAIM: Control, Optimisation and Calculus of Variations
PY - 2002
PB - EDP-Sciences
VL - 8
SP - 219
EP - 238
AB - We consider complex-valued solutions $u_\varepsilon $ of the Ginzburg–Landau equation on a smooth bounded simply connected domain $\Omega $ of $\mathbb {R}^N$, $N \ge 2$, where $\varepsilon > 0$ is a small parameter. We assume that the Ginzburg–Landau energy $E_\varepsilon (u_\varepsilon )$ verifies the bound (natural in the context) $E_\varepsilon (u_\varepsilon )\le M_0|\log \varepsilon |$, where $M_0$ is some given constant. We also make several assumptions on the boundary data. An important step in the asymptotic analysis of $u_\varepsilon $, as $\varepsilon \rightarrow 0$, is to establish uniform $L^p$ bounds for the gradient, for some $p>1$. We review some recent techniques developed in the elliptic case in [7], discuss some variants, and extend the methods to the associated parabolic equation.
LA - eng
KW - Ginzburg–Landau; parabolic equations; Hodge–de Rham decomposition; jacobians; Hodge-de Rham decomposition; Jacobians
UR - http://eudml.org/doc/246070
ER -
References
top- [1] G. Alberti, S. Baldo and G. Orlandi, Variational convergence for functionals of Ginzburg–Landau type. Preprint (2001). Zbl1160.35013
- [2] L. Almeida, S. Baldo, F. Bethuel and G. Orlandi (in preparation).
- [3] L. Almeida and F. Bethuel, Topological methods for the Ginzburg–Landau equation. J. Math. Pures Appl. 11 (1998) 1-49. Zbl0904.35023
- [4] L. Ambrosio and H.M. Soner, A measure theoretic approach to higher codimension mean curvature flow. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 25 (1997) 27-49. Zbl1043.35136MR1655508
- [5] P. Baumann, C.-N. Chen, D. Phillips and P. Sternberg, Vortex annihilation in nonlinear heat flow for Ginzburg–Landau systems. Eur. J. Appl. Math. 6 (1995) 115-126. Zbl0845.35042
- [6] F. Bethuel, Variational methods for Ginzburg–Landau equations, in Calculus of Variations and Geometric evolution problems, Cetraro 1996, edited by S. Hildebrandt and M. Struwe. Springer (1999). Zbl0940.35073
- [7] F. Bethuel, J. Bourgain, H. Brezis and G. Orlandi, estimates for solutions to the Ginzburg–Landau equation with boundary data in . C. R. Acad. Sci. Paris Sér. I Math. 333 (2001) 1069-1076. Zbl1080.35020
- [8] F. Bethuel, H. Brezis and F. Hélein, Asymptotics for the minimization of a Ginzburg–Landau functional. Calc. Var. Partial Differential Equations 1 (1993) 123-148. Zbl0834.35014
- [9] F. Bethuel, H. Brezis and F. Hélein, Ginzburg–Landau Vortices. Birkhäuser, Boston (1994). Zbl0802.35142
- [10] F. Bethuel, H. Brezis and G. Orlandi, Small energy solutions to the Ginzburg–Landau equation. C. R. Acad. Sci. Paris Sér. I Math. 331 (2000) 763-770. Zbl0969.35055
- [11] F. Bethuel, H. Brezis and G. Orlandi, Asymptotics for the Ginzburg–Landau equation in arbitrary dimensions. J. Funct. Anal. 186 (2001) 432-520. Erratum (to appear). Zbl1077.35047
- [12] F. Bethuel and T. Rivière, Vortices for a variational problem related to superconductivity. Ann. Inst. H. Poincaré Anal. Non Linéaire 12 (1995) 243-303. Zbl0842.35119MR1340265
- [13] J. Bourgain, H. Brezis and P. Mironescu, Lifting in Sobolev spaces. J. Anal. 80 (2000) 37-86. Zbl0967.46026MR1771523
- [14] J. Bourgain, H. Brezis and P. Mironescu, On the structure of the Sobolev space with values into the circle. C. R. Acad. Sci. Paris Sér. I Math. 331 (2000) 119-124. Zbl0970.35069MR1781527
- [15] H. Brezis and P. Mironescu, Sur une conjecture de E. De Giorgi relative à l’énergie de Ginzburg–Landau. C. R. Acad. Sci. Paris Sér. I Math. 319 (1994) 167-170. Zbl0805.49004
- [16] H. Federer, Geometric Measure Theory. Springer, Berlin (1969). Zbl0176.00801MR257325
- [17] Z.C. Han and I. Shafrir, Lower bounds for the energy of -valued maps in perforated domains. J. Anal. Math. 66 (1995) 295-305. Zbl0852.49028MR1370354
- [18] R. Hardt and F.H. Lin, Mappings minimizing the -norm of the gradient. Comm. Pure Appl. Math. 40 (1987) 555-588. Zbl0646.49007MR896767
- [19] R. Jerrard, Lower bounds for generalized Ginzburg–Landau functionals. SIAM J. Math. Anal. 30 (1999) 721-746. Zbl0928.35045
- [20] R. Jerrard and H.M. Soner, Dynamics of Ginzburg–Landau vortices. Arch. Rational Mech. Anal. 142 (1998) 99-125. Zbl0923.35167
- [21] R. Jerrard and H.M. Soner, Scaling limits and regularity results for a class of Ginzburg–Landau systems. Ann. Inst. H. Poincaré Anal. Non Linéaire 16 (1999) 423-466. Zbl0944.35006
- [22] R. Jerrard and H.M. Soner, The Jacobian and the Ginzburg–Landau energy. Calc. Var. Partial Differential Equations (to appear). Zbl1034.35025
- [23] F.H. Lin, Some dynamical properties of Ginzburg–Landau vortices. Comm. Pure Appl. Math. 49 (1996) 323-359. Zbl0853.35058
- [24] F.H. Lin, Complex Ginzburg–Landau equations and dynamics of vortices, filaments, and codimension- submanifolds. Comm. Pure Appl. Math. 51 (1998) 385-441 Zbl0932.35121
- [25] F.H. Lin, Rectifiability of defect measures, fundamental groups and density of Sobolev mappings, in Journées “Équations aux Dérivées Partielles”, Saint-Jean-de-Monts, 1996, Exp. No. XII. École Polytechnique, Palaiseau (1996). Zbl0871.35028
- [26] F.H. Lin and T. Rivière, Complex Ginzburg–Landau equations in high dimensions and codimension two area minimizing currents. J. Eur. Math. Soc. 1 (1999) 237-311. Erratum, Ibid. Zbl0939.35056
- [27] F.H. Lin and T. Rivière, A quantization property for static Ginzburg–Landau vortices. Comm. Pure Appl. Math. 54 (2001) 206-228. Zbl1033.58013
- [28] F.H. Lin and T. Rivière, A quantization property for moving line vortices. Comm. Pure Appl. Math. 54 (2001) 826-850. Zbl1029.35127MR1823421
- [29] L. Modica, The gradient theory of phase transitions and the minimal interface criterion. Arch. Rational Mech. Anal. 98 (1987) 123-142. Zbl0616.76004MR866718
- [30] L. Modica and S. Mortola, Un esempio di -convergenza. Boll. Un. Mat. Ital. B 14 (1977) 285-299. Zbl0356.49008MR445362
- [31] T. Rivière, Line vortices in the -Higgs model. ESAIM: COCV 1 (1996) 77-167. Zbl0874.53019MR1394302
- [32] T. Rivière, Dense subsets of . Ann. Global Anal. Geom. 18 (2000) 517-528. Zbl0960.35022MR1790711
- [33] T. Rivière, Asymptotic analysis for the Ginzburg–Landau Equation. Boll. Un. Mat. Ital. B 8 (1999) 537-575. Zbl0939.35199
- [34] E. Sandier, Lower bounds for the energy of unit vector fields and applications. J. Funct. Anal. 152 (1997) 379-403; Erratum 171 (2000) 233. Zbl0908.58004MR1607928
- [35] L. Simon, Lectures on Geometric Measure Theory, in Proc. of the Centre for Math. Analysis. Australian Nat. Univ., Canberra (1983). Zbl0546.49019MR756417
- [36] M. Struwe, On the asymptotic behavior of the Ginzburg–Landau model in 2 dimensions. J. Differential Equations 7 (1994) 1613-1624; Erratum 8 (1995) 224. Zbl0809.35031
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.