Uniform estimates for the parabolic Ginzburg–Landau equation
ESAIM: Control, Optimisation and Calculus of Variations (2010)
- Volume: 8, page 219-238
- ISSN: 1292-8119
Access Full Article
topAbstract
topHow to cite
topBethuel, F., and Orlandi, G.. "Uniform estimates for the parabolic Ginzburg–Landau equation." ESAIM: Control, Optimisation and Calculus of Variations 8 (2010): 219-238. <http://eudml.org/doc/90647>.
@article{Bethuel2010,
abstract = {
We consider complex-valued solutions uE of
the Ginzburg–Landau equation on a smooth bounded simply connected
domain Ω of $\mathbb\{R\}^N$, N ≥ 2, where ε > 0 is
a small parameter. We assume that the
Ginzburg–Landau energy $E_\varepsilon(u_\varepsilon)$ verifies the bound
(natural in the context)
$E_\varepsilon(u_\varepsilon)\le M_0|\log\varepsilon|$, where M0 is some given constant. We
also make several assumptions on the boundary data. An
important step in the asymptotic analysis of uE, as
ε → 0, is to establish uniform Lp bounds for the
gradient, for some p>1. We review some recent techniques
developed in the elliptic case
in [7], discuss some variants, and extend the methods to the
associated parabolic
equation.
},
author = {Bethuel, F., Orlandi, G.},
journal = {ESAIM: Control, Optimisation and Calculus of Variations},
keywords = {Ginzburg–Landau; parabolic equations; Hodge–de Rham
decomposition; Jacobians.; Hodge-de Rham decomposition; Jacobians},
language = {eng},
month = {3},
pages = {219-238},
publisher = {EDP Sciences},
title = {Uniform estimates for the parabolic Ginzburg–Landau equation},
url = {http://eudml.org/doc/90647},
volume = {8},
year = {2010},
}
TY - JOUR
AU - Bethuel, F.
AU - Orlandi, G.
TI - Uniform estimates for the parabolic Ginzburg–Landau equation
JO - ESAIM: Control, Optimisation and Calculus of Variations
DA - 2010/3//
PB - EDP Sciences
VL - 8
SP - 219
EP - 238
AB -
We consider complex-valued solutions uE of
the Ginzburg–Landau equation on a smooth bounded simply connected
domain Ω of $\mathbb{R}^N$, N ≥ 2, where ε > 0 is
a small parameter. We assume that the
Ginzburg–Landau energy $E_\varepsilon(u_\varepsilon)$ verifies the bound
(natural in the context)
$E_\varepsilon(u_\varepsilon)\le M_0|\log\varepsilon|$, where M0 is some given constant. We
also make several assumptions on the boundary data. An
important step in the asymptotic analysis of uE, as
ε → 0, is to establish uniform Lp bounds for the
gradient, for some p>1. We review some recent techniques
developed in the elliptic case
in [7], discuss some variants, and extend the methods to the
associated parabolic
equation.
LA - eng
KW - Ginzburg–Landau; parabolic equations; Hodge–de Rham
decomposition; Jacobians.; Hodge-de Rham decomposition; Jacobians
UR - http://eudml.org/doc/90647
ER -
References
top- G. Alberti, S. Baldo and G. Orlandi, Variational convergence for functionals of Ginzburg-Landau type. Preprint (2001).
- L. Almeida, S. Baldo, F. Bethuel and G. Orlandi (in preparation).
- L. Almeida and F. Bethuel, Topological methods for the Ginzburg-Landau equation. J. Math. Pures Appl.11 (1998) 1-49.
- L. Ambrosio and H.M. Soner, A measure theoretic approach to higher codimension mean curvature flow. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4)25 (1997) 27-49.
- P. Baumann, C.-N. Chen, D. Phillips and P. Sternberg, Vortex annihilation in nonlinear heat flow for Ginzburg-Landau systems. Eur. J. Appl. Math.6 (1995) 115-126.
- F. Bethuel, Variational methods for Ginzburg-Landau equations, in Calculus of Variations and Geometric evolution problems, Cetraro 1996, edited by S. Hildebrandt and M. Struwe. Springer (1999).
- F. Bethuel, J. Bourgain, H. Brezis and G. Orlandi, W1,pestimates for solutions to the Ginzburg-Landau equation with boundary data in H1/2. C. R. Acad. Sci. Paris Sér. I Math.333 (2001) 1069-1076.
- F. Bethuel, H. Brezis and F. Hélein, Asymptotics for the minimization of a Ginzburg-Landau functional. Calc. Var. Partial Differential Equations1 (1993) 123-148.
- F. Bethuel, H. Brezis and F. Hélein, Ginzburg-Landau Vortices. Birkhäuser, Boston (1994).
- F. Bethuel, H. Brezis and G. Orlandi, Small energy solutions to the Ginzburg-Landau equation. C. R. Acad. Sci. Paris Sér. I Math.331 (2000) 763-770.
- F. Bethuel, H. Brezis and G. Orlandi, Asymptotics for the Ginzburg-Landau equation in arbitrary dimensions. J. Funct. Anal.186 (2001) 432-520. Erratum (to appear).
- F. Bethuel and T. Rivière, Vortices for a variational problem related to superconductivity. Ann. Inst. H. Poincaré Anal. Non Linéaire12 (1995) 243-303.
- J. Bourgain, H. Brezis and P. Mironescu, Lifting in Sobolev spaces. J. Anal.80 (2000) 37-86.
- J. Bourgain, H. Brezis and P. Mironescu, On the structure of the Sobolev space H1/2 with values into the circle. C. R. Acad. Sci. Paris Sér. I Math.331 (2000) 119-124.
- H. Brezis and P. Mironescu, Sur une conjecture de E. De Giorgi relative à l'énergie de Ginzburg-Landau. C. R. Acad. Sci. Paris Sér. I Math.319 (1994) 167-170.
- H. Federer, Geometric Measure Theory. Springer, Berlin (1969).
- Z.C. Han and I. Shafrir, Lower bounds for the energy of S1-valued maps in perforated domains. J. Anal. Math.66 (1995) 295-305.
- R. Hardt and F.H. Lin, Mappings minimizing the Lp-norm of the gradient. Comm. Pure Appl. Math. 40 (1987) 555-588.
- R. Jerrard, Lower bounds for generalized Ginzburg-Landau functionals. SIAM J. Math. Anal.30 (1999) 721-746.
- R. Jerrard and H.M. Soner, Dynamics of Ginzburg-Landau vortices. Arch. Rational Mech. Anal.142 (1998) 99-125.
- R. Jerrard and H.M. Soner, Scaling limits and regularity results for a class of Ginzburg-Landau systems. Ann. Inst. H. Poincaré Anal. Non Linéaire16 (1999) 423-466.
- R. Jerrard and H.M. Soner, The Jacobian and the Ginzburg-Landau energy. Calc. Var. Partial Differential Equations (to appear).
- F.H. Lin, Some dynamical properties of Ginzburg-Landau vortices. Comm. Pure Appl. Math.49 (1996) 323-359.
- F.H. Lin, Complex Ginzburg-Landau equations and dynamics of vortices, filaments, and codimension-2 submanifolds. Comm. Pure Appl. Math. 51 (1998) 385-441
- F.H. Lin, Rectifiability of defect measures, fundamental groups and density of Sobolev mappings, in Journées ``Équations aux Dérivées Partielles", Saint-Jean-de-Monts, 1996, Exp. No. XII. École Polytechnique, Palaiseau (1996).
- F.H. Lin and T. Rivière, Complex Ginzburg-Landau equations in high dimensions and codimension two area minimizing currents. J. Eur. Math. Soc.1 (1999) 237-311. Erratum, Ibid.
- F.H. Lin and T. Rivière, A quantization property for static Ginzburg-Landau vortices. Comm. Pure Appl. Math.54 (2001) 206-228.
- F.H. Lin and T. Rivière, A quantization property for moving line vortices. Comm. Pure Appl. Math.54 (2001) 826-850.
- L. Modica, The gradient theory of phase transitions and the minimal interface criterion. Arch. Rational Mech. Anal. 98 (1987) 123-142.
- L. Modica and S. Mortola, Un esempio di Γ-convergenza. Boll. Un. Mat. Ital. B14 (1977) 285-299.
- T. Rivière, Line vortices in the U(1)-Higgs model. ESAIM: COCV1 (1996) 77-167.
- T. Rivière, Dense subsets of H1/2(S2,S1). Ann. Global Anal. Geom.18 (2000) 517-528.
- T. Rivière, Asymptotic analysis for the Ginzburg-Landau Equation. Boll. Un. Mat. Ital. B8 (1999) 537-575.
- E. Sandier, Lower bounds for the energy of unit vector fields and applications. J. Funct. Anal. 152 (1997) 379-403; Erratum 171 (2000) 233.
- L. Simon, Lectures on Geometric Measure Theory, in Proc. of the Centre for Math. Analysis. Australian Nat. Univ., Canberra (1983).
- M. Struwe, On the asymptotic behavior of the Ginzburg-Landau model in 2 dimensions. J. Differential Equations 7 (1994) 1613-1624; Erratum 8 (1995) 224.
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.