A geometric approach to on-diagonal heat kernel lower bounds on groups
Thierry Coulhon[1]; Alexander Grigor'yan[2]; Christophe Pittet[3]
- [1] Université de Cergy-Pontoise, Département de Mathématiques, 2 avenue Adolphe Chauvin, 95032 Cergy Cedex (France)
- [2] Imperial College, London DW7 2BZ (Grande-Bretagne)
- [3] Université Paul Sabatier, Laboratoire Émile Picard, 118 route de Narbonne, 31062 Toulouse Cedex (France)
Annales de l’institut Fourier (2001)
- Volume: 51, Issue: 6, page 1763-1827
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topCoulhon, Thierry, Grigor'yan, Alexander, and Pittet, Christophe. "A geometric approach to on-diagonal heat kernel lower bounds on groups." Annales de l’institut Fourier 51.6 (2001): 1763-1827. <http://eudml.org/doc/115967>.
@article{Coulhon2001,
abstract = {We introduce a new method for obtaining heat kernel on-diagonal lower bounds on non-
compact Lie groups and on infinite discrete groups. By using this method, we are able to
recover the previously known results for unimodular amenable Lie groups as well as for
certain classes of discrete groups including the polycyclic groups, and to give them a
geometric interpretation. We also obtain new results for some discrete groups which admit
the structure of a semi-direct product or of a wreath product. These include the two-
generators groups of affine transformations of the real line $\langle x\mapsto x+1,x\mapsto \lambda x\rangle $ with $\lambda $ algebraic, as well as lamplighter groups
with nilpotent base.},
affiliation = {Université de Cergy-Pontoise, Département de Mathématiques, 2 avenue Adolphe Chauvin, 95032 Cergy Cedex (France); Imperial College, London DW7 2BZ (Grande-Bretagne); Université Paul Sabatier, Laboratoire Émile Picard, 118 route de Narbonne, 31062 Toulouse Cedex (France)},
author = {Coulhon, Thierry, Grigor'yan, Alexander, Pittet, Christophe},
journal = {Annales de l’institut Fourier},
keywords = {heat kernels on manifolds; random walks on graphs; Følner sets; first eigenvalue for the Dirichlet problem; Lie groups; finitely generated groups},
language = {eng},
number = {6},
pages = {1763-1827},
publisher = {Association des Annales de l'Institut Fourier},
title = {A geometric approach to on-diagonal heat kernel lower bounds on groups},
url = {http://eudml.org/doc/115967},
volume = {51},
year = {2001},
}
TY - JOUR
AU - Coulhon, Thierry
AU - Grigor'yan, Alexander
AU - Pittet, Christophe
TI - A geometric approach to on-diagonal heat kernel lower bounds on groups
JO - Annales de l’institut Fourier
PY - 2001
PB - Association des Annales de l'Institut Fourier
VL - 51
IS - 6
SP - 1763
EP - 1827
AB - We introduce a new method for obtaining heat kernel on-diagonal lower bounds on non-
compact Lie groups and on infinite discrete groups. By using this method, we are able to
recover the previously known results for unimodular amenable Lie groups as well as for
certain classes of discrete groups including the polycyclic groups, and to give them a
geometric interpretation. We also obtain new results for some discrete groups which admit
the structure of a semi-direct product or of a wreath product. These include the two-
generators groups of affine transformations of the real line $\langle x\mapsto x+1,x\mapsto \lambda x\rangle $ with $\lambda $ algebraic, as well as lamplighter groups
with nilpotent base.
LA - eng
KW - heat kernels on manifolds; random walks on graphs; Følner sets; first eigenvalue for the Dirichlet problem; Lie groups; finitely generated groups
UR - http://eudml.org/doc/115967
ER -
References
top- G.K. Alexopoulos, Fonctions harmoniques bornées sur les groupes résolubles, C.R. Acad. Sci. Paris 305 (1987), 777-779 Zbl0657.31014MR921133
- G.K. Alexopoulos, A lower estimate for central probabilities on polycyclic groups, Can. J. Math. 44 (1992), 897-910 Zbl0762.31003MR1186471
- M.T. Barlow, A. Perkins, Symmetric Markov chains in : how fast can they move?, Probab. Th. Rel. Fields 82 (1989), 95-108 Zbl0667.60070MR997432
- L. Bartholdi, The growth of Grigorchuk's torsion group, Internat. Math. Res. Notices 20 (1998), 1049-1054 Zbl0942.20027MR1656258
- H. Bass, The degree of polynomial growth of finitely generated groups, Proc. London Math. Soc. 25 (1972), 603-614 Zbl0259.20045MR379672
- J. Cheeger, A lower bound for the smallest eigenvalue of the Laplacian, Problems in Analysis: A Symposium in honor of Salomon Bochner (1970), 195-199, Princeton University Press, Princeton Zbl0212.44903
- F.R.K. Chung, Spectral Graph Theory, CBMS 92 (1996), AMS publications Zbl0867.05046
- F.R.K. Chung, A. Grigor'yan, S.-T. Yau, Higher eigenvalues and isoperimetric inequalities on Riemannian manifolds and graphs, Comm. Anal. Geom. 8 (2000), 969-1026 Zbl1001.58022MR1846124
- T. Coulhon, Ultracontractivity and Nash type inequalities, J. Funct. Anal. 141 (1996), 510-539 Zbl0887.58009MR1418518
- T. Coulhon, Large time behaviour of heat kernels on Riemannian manifolds: fast and slow decays, Journées équations aux dérivées partielles, St-Jean-de-Monts II,1-II,12 (1998) Zbl1021.35014
- T. Coulhon, A. Grigor'yan, On diagonal lower bounds for heat kernels on non-compact manifolds and Markov chains, Duke Math. J. 89 (1997), 133-199 Zbl0920.58064MR1458975
- T. Coulhon, A. Grigor'yan, Random walks on graphs with regular volume growth, Geom. and Funct. Analysis 8 (1998), 656-701 Zbl0918.60053MR1633979
- T. Coulhon, L. Saloff-Coste, Isopérimétrie pour les groupes et les variétés, Rev. Mat. Iberoamericana 9 (1993), 293-314 Zbl0782.53066MR1232845
- E.B. Davies, Heat kernels and spectral theory, (1989), Cambridge University Press Zbl0699.35006MR990239
- J. Dodziuk, Difference equations, isoperimetric inequalities and transience of certain random walks, Trans. Amer. Math. Soc. 284 (1984), 787-794 Zbl0512.39001MR743744
- A. Grigor'yan, Heat kernel upper bounds on a complete non-compact manifold, Rev. Mat. Iberoamericana 10 (1994), 395-452 Zbl0810.58040MR1286481
- A. Grigor'yan, Analytic and geometric background of recurrence and non-explosion of the Brownian motion on Riemannian manifolds, Bull. Amer. Math. Soc. 36 (1999), 135-249 Zbl0927.58019MR1659871
- A. Grigor'yan, M. Kelbert, On Hardy-Littlewood inequality for Brownian motion on Riemannian manifolds, J. London Math. Soc. (2) 62 (2000), 625-639 Zbl1026.58028MR1783649
- R.I. Grigorchuk, Degrees of growth of finitely generated groups and the theory of invariant means, Izv. Akad. Nauk SSSR, Ser. Mat. 49 (1984), 939-985 Zbl0583.20023MR764305
- Y. Guivarc'h, Croissance polynomiale et période des fonctions harmoniques, Bull. Soc. Math. France 101 (1973), 333-379 Zbl0294.43003MR369608
- W. Hebisch, On heat kernels on Lie groups, Math. Zeit. 210 (1992), 593-605 Zbl0792.22007MR1175724
- W. Hebisch, L. Saloff-Coste, Gaussian estimates for Markov chains and random walks on groups, Ann. Prob. 21 (1993), 673-709 Zbl0776.60086MR1217561
- J. Jenkins, Growth of connected locally compact groups, J. Funct. Anal. 12 (1973), 113-127 Zbl0247.43001MR349895
- V.A. Kaimanovich, A.M. Vershik, Random walks on discrete groups: boundary and entropy, Ann. Prob. 11 (1983), 457-490 Zbl0641.60009MR704539
- H. Kesten, Symmetric random walks on groups, Trans. Amer. Math. Soc. 92 (1959), 336-354 Zbl0092.33503MR109367
- F. Lust-Piquard, Lower bounds on for some contractions of , with some applications to Markov operators, Math. Ann. 303 (1995), 699-712 Zbl0836.47021MR1359956
- V.G. Maz'ya, Sobolev spaces, (1985), Springer Zbl0727.46017MR817985
- G.D. Mostow, On the fundamental group of a homogeneous space, Ann. Math. 66 (1957), 249-255 Zbl0093.03402MR88675
- Ch. Pittet, Følner sequences on polycyclic groups, Rev. Mat. Iberoamericana 11 (1995), 675-686 Zbl0842.20035MR1363210
- Ch. Pittet, The isoperimetric profile of homogeneous Riemannian manifolds, J. Diff. Geom. 54 (2000), 255-302 Zbl1035.53069MR1818180
- Ch. Pittet, L. Saloff-Coste, A survey on the relationship between volume growth, isoperimetry, and the behavior of simple random walk on Cayley graphs, with examples, (1997)
- Ch. Pittet, L. Saloff-Coste, Amenable groups, isoperimetric profiles and random walks, Geometric group theory down under. Proceedings of a special year in geometric group theory, Canberra, Australia, 1996 (1999), Walter De Gruyter Zbl0934.43001
- Ch. Pittet, L. Saloff-Coste, On the stability of the behavior of random walks on groups, J. Geom. Anal. 10 (2000), 713-737 Zbl0985.60043MR1817783
- Ch. Pittet, L. Saloff-Coste, On random walks on wreath products Zbl1021.60004
- M.S. Raghunathan, Discrete subgroups of Lie groups, 68 (1972), Springer, Berlin Zbl0254.22005MR507234
- D.J.S. Robinson, A course in the theory of groups, (1993), Springer Zbl0836.20001MR1261639
- D. Segal, Polycyclic groups, Cambridge Tracts in Mathematics 82 (1983) Zbl0516.20001MR713786
- D.W. Stroock, Estimates on the heat kernel for the second order divergence form operators, Probability theory. Proceedings of the 1989 Singapore Probability Conference held at the National University of Singapore, June 8-16 1989 (1992), 29-44, Walter De Gruyter Zbl0779.60065
- J. Tits, Appendix to Gromov M., Groups of polynomial growth and expanding maps, Publ. Math.I.H.E.S. 53 (1981), 74-78 Zbl0474.20018MR623535
- N.Th. Varopoulos, A potential theoretic property of soluble groups, Bull. Sci. Math., 2e série 108 (1983), 263-273 Zbl0546.60008MR771912
- N.Th. Varopoulos, Random walks on soluble groups, Bull. Sc. Math., 2e série 107 (1983), 337-344 Zbl0532.60009MR732356
- N.Th. Varopoulos, Convolution powers on locally compact groups, Bull. Sc. Math., 2e série 111 (1987), 333-342 Zbl0626.22004MR921558
- N.Th. Varopoulos, Analysis on Lie groups, J. Funct. Anal. 76 (1988), 346-410 Zbl0634.22008MR924464
- N.Th. Varopoulos, Groups of superpolynomial growth, Proceedings of the ICM satellite conference on Harmonic analysis (1991), Springer Zbl0802.43002
- N.Th. Varopoulos, Diffusion on Lie groups II, Can. J. Math. 46 (1994), 1073-1092 Zbl0829.22013MR1295132
- N.Th. Varopoulos, L. Saloff-Coste, T. Coulhon, Analysis and geometry on groups, (1992), Cambridge University Press, Cambridge Zbl0813.22003MR1218884
- W. Woess, Random walks on infinite graphs and groups, 138 (2000), Cambridge Univ. Press Zbl0951.60002MR1743100
- M. Gromov, Groups of polynomial growth and expanding maps, Publ. Math. I.H.E.S. 53 (1981), 53-73 Zbl0474.20018MR623534
- R.I. Grigorchuk, Degrees of growth of finitely generated groups and the theory of invariant means, Math. USSR-Izv. (English transl.) 25 (1985), 259-300 Zbl0583.20023MR764305
Citations in EuDML Documents
top- Driss Gretete, Stabilité du comportement des marches aléatoires sur un groupe localement compact
- Benoît Daniel, Sphères à courbure moyenne constante et problème isopérimétrique dans les variétés homogènes
- Sami Mustapha, Bornes inférieures pour les marches aléatoires sur les groupes p-adiques moyennables
- Pascal Auscher, Thierry Coulhon, Xuan Thinh Duong, Steve Hofmann, Riesz transform on manifolds and heat kernel regularity
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.