A geometric approach to on-diagonal heat kernel lower bounds on groups

Thierry Coulhon[1]; Alexander Grigor'yan[2]; Christophe Pittet[3]

  • [1] Université de Cergy-Pontoise, Département de Mathématiques, 2 avenue Adolphe Chauvin, 95032 Cergy Cedex (France)
  • [2] Imperial College, London DW7 2BZ (Grande-Bretagne)
  • [3] Université Paul Sabatier, Laboratoire Émile Picard, 118 route de Narbonne, 31062 Toulouse Cedex (France)

Annales de l’institut Fourier (2001)

  • Volume: 51, Issue: 6, page 1763-1827
  • ISSN: 0373-0956

Abstract

top
We introduce a new method for obtaining heat kernel on-diagonal lower bounds on non- compact Lie groups and on infinite discrete groups. By using this method, we are able to recover the previously known results for unimodular amenable Lie groups as well as for certain classes of discrete groups including the polycyclic groups, and to give them a geometric interpretation. We also obtain new results for some discrete groups which admit the structure of a semi-direct product or of a wreath product. These include the two- generators groups of affine transformations of the real line x x + 1 , x λ x with λ algebraic, as well as lamplighter groups with nilpotent base.

How to cite

top

Coulhon, Thierry, Grigor'yan, Alexander, and Pittet, Christophe. "A geometric approach to on-diagonal heat kernel lower bounds on groups." Annales de l’institut Fourier 51.6 (2001): 1763-1827. <http://eudml.org/doc/115967>.

@article{Coulhon2001,
abstract = {We introduce a new method for obtaining heat kernel on-diagonal lower bounds on non- compact Lie groups and on infinite discrete groups. By using this method, we are able to recover the previously known results for unimodular amenable Lie groups as well as for certain classes of discrete groups including the polycyclic groups, and to give them a geometric interpretation. We also obtain new results for some discrete groups which admit the structure of a semi-direct product or of a wreath product. These include the two- generators groups of affine transformations of the real line $\langle x\mapsto x+1,x\mapsto \lambda x\rangle $ with $\lambda $ algebraic, as well as lamplighter groups with nilpotent base.},
affiliation = {Université de Cergy-Pontoise, Département de Mathématiques, 2 avenue Adolphe Chauvin, 95032 Cergy Cedex (France); Imperial College, London DW7 2BZ (Grande-Bretagne); Université Paul Sabatier, Laboratoire Émile Picard, 118 route de Narbonne, 31062 Toulouse Cedex (France)},
author = {Coulhon, Thierry, Grigor'yan, Alexander, Pittet, Christophe},
journal = {Annales de l’institut Fourier},
keywords = {heat kernels on manifolds; random walks on graphs; Følner sets; first eigenvalue for the Dirichlet problem; Lie groups; finitely generated groups},
language = {eng},
number = {6},
pages = {1763-1827},
publisher = {Association des Annales de l'Institut Fourier},
title = {A geometric approach to on-diagonal heat kernel lower bounds on groups},
url = {http://eudml.org/doc/115967},
volume = {51},
year = {2001},
}

TY - JOUR
AU - Coulhon, Thierry
AU - Grigor'yan, Alexander
AU - Pittet, Christophe
TI - A geometric approach to on-diagonal heat kernel lower bounds on groups
JO - Annales de l’institut Fourier
PY - 2001
PB - Association des Annales de l'Institut Fourier
VL - 51
IS - 6
SP - 1763
EP - 1827
AB - We introduce a new method for obtaining heat kernel on-diagonal lower bounds on non- compact Lie groups and on infinite discrete groups. By using this method, we are able to recover the previously known results for unimodular amenable Lie groups as well as for certain classes of discrete groups including the polycyclic groups, and to give them a geometric interpretation. We also obtain new results for some discrete groups which admit the structure of a semi-direct product or of a wreath product. These include the two- generators groups of affine transformations of the real line $\langle x\mapsto x+1,x\mapsto \lambda x\rangle $ with $\lambda $ algebraic, as well as lamplighter groups with nilpotent base.
LA - eng
KW - heat kernels on manifolds; random walks on graphs; Følner sets; first eigenvalue for the Dirichlet problem; Lie groups; finitely generated groups
UR - http://eudml.org/doc/115967
ER -

References

top
  1. G.K. Alexopoulos, Fonctions harmoniques bornées sur les groupes résolubles, C.R. Acad. Sci. Paris 305 (1987), 777-779 Zbl0657.31014MR921133
  2. G.K. Alexopoulos, A lower estimate for central probabilities on polycyclic groups, Can. J. Math. 44 (1992), 897-910 Zbl0762.31003MR1186471
  3. M.T. Barlow, A. Perkins, Symmetric Markov chains in d : how fast can they move?, Probab. Th. Rel. Fields 82 (1989), 95-108 Zbl0667.60070MR997432
  4. L. Bartholdi, The growth of Grigorchuk's torsion group, Internat. Math. Res. Notices 20 (1998), 1049-1054 Zbl0942.20027MR1656258
  5. H. Bass, The degree of polynomial growth of finitely generated groups, Proc. London Math. Soc. 25 (1972), 603-614 Zbl0259.20045MR379672
  6. J. Cheeger, A lower bound for the smallest eigenvalue of the Laplacian, Problems in Analysis: A Symposium in honor of Salomon Bochner (1970), 195-199, Princeton University Press, Princeton Zbl0212.44903
  7. F.R.K. Chung, Spectral Graph Theory, CBMS 92 (1996), AMS publications Zbl0867.05046
  8. F.R.K. Chung, A. Grigor'yan, S.-T. Yau, Higher eigenvalues and isoperimetric inequalities on Riemannian manifolds and graphs, Comm. Anal. Geom. 8 (2000), 969-1026 Zbl1001.58022MR1846124
  9. T. Coulhon, Ultracontractivity and Nash type inequalities, J. Funct. Anal. 141 (1996), 510-539 Zbl0887.58009MR1418518
  10. T. Coulhon, Large time behaviour of heat kernels on Riemannian manifolds: fast and slow decays, Journées équations aux dérivées partielles, St-Jean-de-Monts II,1-II,12 (1998) Zbl1021.35014
  11. T. Coulhon, A. Grigor'yan, On diagonal lower bounds for heat kernels on non-compact manifolds and Markov chains, Duke Math. J. 89 (1997), 133-199 Zbl0920.58064MR1458975
  12. T. Coulhon, A. Grigor'yan, Random walks on graphs with regular volume growth, Geom. and Funct. Analysis 8 (1998), 656-701 Zbl0918.60053MR1633979
  13. T. Coulhon, L. Saloff-Coste, Isopérimétrie pour les groupes et les variétés, Rev. Mat. Iberoamericana 9 (1993), 293-314 Zbl0782.53066MR1232845
  14. E.B. Davies, Heat kernels and spectral theory, (1989), Cambridge University Press Zbl0699.35006MR990239
  15. J. Dodziuk, Difference equations, isoperimetric inequalities and transience of certain random walks, Trans. Amer. Math. Soc. 284 (1984), 787-794 Zbl0512.39001MR743744
  16. A. Grigor'yan, Heat kernel upper bounds on a complete non-compact manifold, Rev. Mat. Iberoamericana 10 (1994), 395-452 Zbl0810.58040MR1286481
  17. A. Grigor'yan, Analytic and geometric background of recurrence and non-explosion of the Brownian motion on Riemannian manifolds, Bull. Amer. Math. Soc. 36 (1999), 135-249 Zbl0927.58019MR1659871
  18. A. Grigor'yan, M. Kelbert, On Hardy-Littlewood inequality for Brownian motion on Riemannian manifolds, J. London Math. Soc. (2) 62 (2000), 625-639 Zbl1026.58028MR1783649
  19. R.I. Grigorchuk, Degrees of growth of finitely generated groups and the theory of invariant means, Izv. Akad. Nauk SSSR, Ser. Mat. 49 (1984), 939-985 Zbl0583.20023MR764305
  20. Y. Guivarc'h, Croissance polynomiale et période des fonctions harmoniques, Bull. Soc. Math. France 101 (1973), 333-379 Zbl0294.43003MR369608
  21. W. Hebisch, On heat kernels on Lie groups, Math. Zeit. 210 (1992), 593-605 Zbl0792.22007MR1175724
  22. W. Hebisch, L. Saloff-Coste, Gaussian estimates for Markov chains and random walks on groups, Ann. Prob. 21 (1993), 673-709 Zbl0776.60086MR1217561
  23. J. Jenkins, Growth of connected locally compact groups, J. Funct. Anal. 12 (1973), 113-127 Zbl0247.43001MR349895
  24. V.A. Kaimanovich, A.M. Vershik, Random walks on discrete groups: boundary and entropy, Ann. Prob. 11 (1983), 457-490 Zbl0641.60009MR704539
  25. H. Kesten, Symmetric random walks on groups, Trans. Amer. Math. Soc. 92 (1959), 336-354 Zbl0092.33503MR109367
  26. F. Lust-Piquard, Lower bounds on K n 1 for some contractions K of L 2 ( μ ) , with some applications to Markov operators, Math. Ann. 303 (1995), 699-712 Zbl0836.47021MR1359956
  27. V.G. Maz'ya, Sobolev spaces, (1985), Springer Zbl0727.46017MR817985
  28. G.D. Mostow, On the fundamental group of a homogeneous space, Ann. Math. 66 (1957), 249-255 Zbl0093.03402MR88675
  29. Ch. Pittet, Følner sequences on polycyclic groups, Rev. Mat. Iberoamericana 11 (1995), 675-686 Zbl0842.20035MR1363210
  30. Ch. Pittet, The isoperimetric profile of homogeneous Riemannian manifolds, J. Diff. Geom. 54 (2000), 255-302 Zbl1035.53069MR1818180
  31. Ch. Pittet, L. Saloff-Coste, A survey on the relationship between volume growth, isoperimetry, and the behavior of simple random walk on Cayley graphs, with examples, (1997) 
  32. Ch. Pittet, L. Saloff-Coste, Amenable groups, isoperimetric profiles and random walks, Geometric group theory down under. Proceedings of a special year in geometric group theory, Canberra, Australia, 1996 (1999), Walter De Gruyter Zbl0934.43001
  33. Ch. Pittet, L. Saloff-Coste, On the stability of the behavior of random walks on groups, J. Geom. Anal. 10 (2000), 713-737 Zbl0985.60043MR1817783
  34. Ch. Pittet, L. Saloff-Coste, On random walks on wreath products Zbl1021.60004
  35. M.S. Raghunathan, Discrete subgroups of Lie groups, 68 (1972), Springer, Berlin Zbl0254.22005MR507234
  36. D.J.S. Robinson, A course in the theory of groups, (1993), Springer Zbl0836.20001MR1261639
  37. D. Segal, Polycyclic groups, Cambridge Tracts in Mathematics 82 (1983) Zbl0516.20001MR713786
  38. D.W. Stroock, Estimates on the heat kernel for the second order divergence form operators, Probability theory. Proceedings of the 1989 Singapore Probability Conference held at the National University of Singapore, June 8-16 1989 (1992), 29-44, Walter De Gruyter Zbl0779.60065
  39. J. Tits, Appendix to Gromov M., Groups of polynomial growth and expanding maps, Publ. Math.I.H.E.S. 53 (1981), 74-78 Zbl0474.20018MR623535
  40. N.Th. Varopoulos, A potential theoretic property of soluble groups, Bull. Sci. Math., 2e série 108 (1983), 263-273 Zbl0546.60008MR771912
  41. N.Th. Varopoulos, Random walks on soluble groups, Bull. Sc. Math., 2e série 107 (1983), 337-344 Zbl0532.60009MR732356
  42. N.Th. Varopoulos, Convolution powers on locally compact groups, Bull. Sc. Math., 2e série 111 (1987), 333-342 Zbl0626.22004MR921558
  43. N.Th. Varopoulos, Analysis on Lie groups, J. Funct. Anal. 76 (1988), 346-410 Zbl0634.22008MR924464
  44. N.Th. Varopoulos, Groups of superpolynomial growth, Proceedings of the ICM satellite conference on Harmonic analysis (1991), Springer Zbl0802.43002
  45. N.Th. Varopoulos, Diffusion on Lie groups II, Can. J. Math. 46 (1994), 1073-1092 Zbl0829.22013MR1295132
  46. N.Th. Varopoulos, L. Saloff-Coste, T. Coulhon, Analysis and geometry on groups, (1992), Cambridge University Press, Cambridge Zbl0813.22003MR1218884
  47. W. Woess, Random walks on infinite graphs and groups, 138 (2000), Cambridge Univ. Press Zbl0951.60002MR1743100
  48. M. Gromov, Groups of polynomial growth and expanding maps, Publ. Math. I.H.E.S. 53 (1981), 53-73 Zbl0474.20018MR623534
  49. R.I. Grigorchuk, Degrees of growth of finitely generated groups and the theory of invariant means, Math. USSR-Izv. (English transl.) 25 (1985), 259-300 Zbl0583.20023MR764305

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.