Propagation of singularities in many-body scattering in the presence of bound states
Journées équations aux dérivées partielles (1999)
- page 1-20
- ISSN: 0752-0360
Access Full Article
topAbstract
topHow to cite
topVasy, András. "Propagation of singularities in many-body scattering in the presence of bound states." Journées équations aux dérivées partielles (1999): 1-20. <http://eudml.org/doc/93373>.
@article{Vasy1999,
abstract = {In these lecture notes we describe the propagation of singularities of tempered distributional solutions $u\in \mathcal \{S\}^\{\prime \}$ of $(H-\lambda )u=0$, where $H$ is a many-body hamiltonian $H=\Delta +V$, $\Delta \ge 0$, $V=\sum _a V_a$, and $\lambda $ is not a threshold of $H$, under the assumption that the inter-particle (e.g. two-body) interactions $V_a$ are real-valued polyhomogeneous symbols of order $-1$ (e.g. Coulomb-type with the singularity at the origin removed). Here the term “singularity” provides a microlocal description of the lack of decay at infinity. Our result is then that the set of singularities of $u$ is a union of maximally extended broken bicharacteristics of $H$. These are curves in the characteristic variety of $H$, which can be quite complicated due to the existence of bound states. We use this result to describe the wave front relation of the S-matrices. Here we only present the statement of the results and sketch some of the ideas in proving them, the complete details will appear elsewhere.},
author = {Vasy, András},
journal = {Journées équations aux dérivées partielles},
keywords = {wave front relation of the S-matrices},
language = {eng},
pages = {1-20},
publisher = {Université de Nantes},
title = {Propagation of singularities in many-body scattering in the presence of bound states},
url = {http://eudml.org/doc/93373},
year = {1999},
}
TY - JOUR
AU - Vasy, András
TI - Propagation of singularities in many-body scattering in the presence of bound states
JO - Journées équations aux dérivées partielles
PY - 1999
PB - Université de Nantes
SP - 1
EP - 20
AB - In these lecture notes we describe the propagation of singularities of tempered distributional solutions $u\in \mathcal {S}^{\prime }$ of $(H-\lambda )u=0$, where $H$ is a many-body hamiltonian $H=\Delta +V$, $\Delta \ge 0$, $V=\sum _a V_a$, and $\lambda $ is not a threshold of $H$, under the assumption that the inter-particle (e.g. two-body) interactions $V_a$ are real-valued polyhomogeneous symbols of order $-1$ (e.g. Coulomb-type with the singularity at the origin removed). Here the term “singularity” provides a microlocal description of the lack of decay at infinity. Our result is then that the set of singularities of $u$ is a union of maximally extended broken bicharacteristics of $H$. These are curves in the characteristic variety of $H$, which can be quite complicated due to the existence of bound states. We use this result to describe the wave front relation of the S-matrices. Here we only present the statement of the results and sketch some of the ideas in proving them, the complete details will appear elsewhere.
LA - eng
KW - wave front relation of the S-matrices
UR - http://eudml.org/doc/93373
ER -
References
top- [1] A. Bommier. Propriétés de la matrice de diffusion, 2-amas 2-amas, pour les problèmes à N corps à longue portée. Ann. Inst. Henri Poincaré, 59:237-267, 1993. Zbl0804.35111MR95e:81243
- [2] J. Dereziński. Asymptotic completeness of long-range N-body quantum systems. Ann. Math., 138:427-476, 1993. Zbl0844.47005MR94g:81209
- [3] J. Dereziński and C. Gérard. Scattering theory of classical and quantum N-particle systems. Springer, 1997. Zbl0899.47007MR99d:81172
- [4] R. G. Froese and I. Herbst. Exponential bounds and absence of positive eigen-values of N-body Schrödinger operators. Commun. Math. Phys., 87:429-447, 1982. Zbl0509.35061MR85g:35091
- [5] R. G. Froese and I. Herbst. A new proof of the Mourre estimate. Duke Math. J., 49:1075-1085, 1982. Zbl0514.35025MR85d:35092
- [6] C. Gérard, H. Isozaki, and E. Skibsted. Commutator algebra and resolvent estimates, volume 23 of Advanced studies in pure mathematics, pages 69-82. 1994. Zbl0814.35086MR95h:35154
- [7] C. Gérard, H. Isozaki, and E. Skibsted. N-body resolvent estimates. J. Math. Soc. Japan, 48:135-160, 1996. Zbl0851.35101MR96j:81131
- [8] G. M. Graf. Asymptotic completeness for N-body short range systems : a new proof. Commun. Math. Phys., 132:73-101, 1990. Zbl0726.35096MR91i:81100
- [9] A. Hassell. Distorted plane waves for the 3 body Schrödinger operator. Geom. Funct. Anal., to appear. Zbl0953.35122
- [10] L. Hörmander. The analysis of linear partial differential operators, vol. 1-4. Springer-Verlag, 1983. Zbl0521.35002
- [11] M. Ikawa, editor. Spectral and scattering theory. Marcel Dekker, 1994. Zbl0798.00016MR95c:35006
- [12] H. Isozaki. Structures of S-matrices for three body Schrödinger operators. Commun. Math. Phys., 146:241-258, 1992. Zbl0748.35026MR93h:81146
- [13] H. Isozaki. A generalization of the radiation condition of Sommerfeld for N-body Schrödinger operators. Duke Math. J., 74:557-584, 1994. Zbl0811.35107MR95d:81148
- [14] H. Isozaki. A uniqueness theorem for the N-body Schrödinger equation and its applications. In Ikawa [11], 1994. Zbl0813.35068
- [15] H. Isozaki and J. Kitada. Scattering matrices for two-body schrödinger operators. Scient. Papers College Arts and Sci., Tokyo University, 35:81-107, 1985. Zbl0615.35065
- [16] A. Jensen. Propagation estimates for Schrödinger-type operators. Trans. Amer. Math. Soc., 291-1:129-144, 1985. Zbl0577.35089MR86k:35119
- [17] G. Lebeau. Propagation des ondes dans les variétés à coins. Ann. scient. Éc. Norm. Sup., 30:429-497, 1997. Zbl0891.35072MR98d:58183
- [18] R. B. Melrose. Differential analysis on manifolds with corners. In preparation. Zbl0754.58035
- [19] R. B. Melrose. Spectral and scattering theory for the Laplacian on asymptotically Euclidian spaces. In Ikawa [11], 1994. Zbl0837.35107MR95k:58168
- [20] R. B. Melrose and J. Sjöstrand. Singularities of boundary value problems. I. Comm. Pure Appl. Math, 31:593-617, 1978. Zbl0368.35020MR58 #11859
- [21] R. B. Melrose and M. Zworski. Scattering metrics and geodesic flow at infinity. Inventiones Mathematicae, 124:389-436, 1996. Zbl0855.58058MR96k:58230
- [22] E. Mourre. Absence of singular continuous spectrum of certain self-adjoint operators. Commun. Math. Phys., 78:391-408, 1981. Zbl0489.47010MR82c:47030
- [23] P. Perry, I. M. Sigal, and B. Simon. Spectral analysis of N-body Schrödinger operators. Ann. Math., 114:519-567, 1981. Zbl0477.35069MR83b:81129
- [24] I. M. Sigal and A. Soffer. N-particle scattering problem : asymptotic completeness for short range systems. Ann. Math., 125:35-108, 1987. Zbl0646.47009MR88m:81137
- [25] I. M. Sigal and A. Soffer. Long-range many-body scattering. Inventiones Math., 99:115-143, 1990. Zbl0702.35197MR91e:81114
- [26] I. M. Sigal and A. Soffer. Asymptotic completeness of N ≤ 4-particle systems with the Coulomb-type interactions. Duke Math. J., 71:243-298, 1993. Zbl0853.70010MR94i:81141
- [27] I. M. Sigal and A. Soffer. Asymptotic completeness of N-particle long-range scattering. J. Amer. Math. Soc., 7:307-334, 1994. Zbl0811.35091MR94k:81327
- [28] E. Skibsted. Smoothness of N-body scattering amplitudes. Reviews in Math. Phys., 4:619-658, 1992. Zbl0781.35047MR94i:81142
- [29] A. Vasy. Structure of the resolvent for three-body potentials. Duke Math. J., 90:379-434, 1997. Zbl0891.35111MR98k:81295
- [30] A. Vasy. Propagation of singularities in euclidean many-body scattering in the presence of bound states. In preparation, 1999. Zbl1003.35012
- [31] A. Vasy. Propagation of singularities in many-body scattering. Preprint, 1999. Zbl1003.35012
- [32] A. Vasy. Scattering matrices in many-body scattering. Commun. Math. Phys., 200:105-124, 1999. Zbl0929.47044MR99m:81278
- [33] A. Vasy. Propagation of singularities in three-body scattering. Astérisque, To appear. Zbl0941.35001
- [34] X. P. Wang. Microlocal estimates for N-body Schrödinger operators. J. Fac. Sci. Univ. Tokyo Sect. IA, Math., 40:337-385, 1993. Zbl0810.35073
- [35] D. Yafaev. Radiation conditions and scattering theory for N-particle Hamiltonians. Commun. Math. Phys., 154:523-554, 1993. Zbl0781.35048MR95b:81220
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.