The Schrödinger equation on a compact manifold : Strichartz estimates and applications
Nicolas Burq; Patrick Gérard; Nikolay Tzvetkov
Journées équations aux dérivées partielles (2001)
- page 1-18
- ISSN: 0752-0360
Access Full Article
topAbstract
topHow to cite
topBurq, Nicolas, Gérard, Patrick, and Tzvetkov, Nikolay. "The Schrödinger equation on a compact manifold : Strichartz estimates and applications." Journées équations aux dérivées partielles (2001): 1-18. <http://eudml.org/doc/93416>.
@article{Burq2001,
abstract = {We prove Strichartz estimates with fractional loss of derivatives for the Schrödinger equation on any riemannian compact manifold. As a consequence we infer global existence results for the Cauchy problem of nonlinear Schrödinger equations on surfaces in the case of defocusing polynomial nonlinearities, and on three-manifolds in the case of quadratic nonlinearities. We also discuss the optimality of these Strichartz estimates on spheres.},
author = {Burq, Nicolas, Gérard, Patrick, Tzvetkov, Nikolay},
journal = {Journées équations aux dérivées partielles},
keywords = {global existence results; optimality},
language = {eng},
pages = {1-18},
publisher = {Université de Nantes},
title = {The Schrödinger equation on a compact manifold : Strichartz estimates and applications},
url = {http://eudml.org/doc/93416},
year = {2001},
}
TY - JOUR
AU - Burq, Nicolas
AU - Gérard, Patrick
AU - Tzvetkov, Nikolay
TI - The Schrödinger equation on a compact manifold : Strichartz estimates and applications
JO - Journées équations aux dérivées partielles
PY - 2001
PB - Université de Nantes
SP - 1
EP - 18
AB - We prove Strichartz estimates with fractional loss of derivatives for the Schrödinger equation on any riemannian compact manifold. As a consequence we infer global existence results for the Cauchy problem of nonlinear Schrödinger equations on surfaces in the case of defocusing polynomial nonlinearities, and on three-manifolds in the case of quadratic nonlinearities. We also discuss the optimality of these Strichartz estimates on spheres.
LA - eng
KW - global existence results; optimality
UR - http://eudml.org/doc/93416
ER -
References
top- [Besse] A. BesseManifolds all of whose geodesics are closed Springer-Verlag, Berlin-New York, 1978. Zbl0387.53010MR496885
- [Bo1] J. BourgainFourier transform restriction phenomena for certain lattice subsets and application to nonlinear evolution equations I. Schrödinger equations, Geom. and Funct. Anal. 3 1993, 107-156. Zbl0787.35097MR1209299
- [Bo2] J. BourgainExponential sums and nonlinear Schrödinger equations, Geom. and Funct. Anal. 3 1993, 157-178. Zbl0787.35096MR1209300
- [Bo3] J. BourgainGlobal solutions of nonlinear Schrödinger equations, Colloq. Publications, American Math. Soc., 1999. Zbl0933.35178MR1691575
- [Bo4] J. BourgainGlobal wellposedness of defocusing critical nonlinear Schrödinger equations in the radial case, J. Amer. Math. Soc. 12 1999, 145-171. Zbl0958.35126MR1626257
- [BG] H. Brézis, T. GallouëtNonlinear Schrödinger evolution equations, Nonlinear Analysis, Theory, Methods and Applications, 4 1980, 677-681. Zbl0451.35023MR582536
- [BGT] N. Burq, P. Gérard, N. TzvetkovStrichartz inequalities and the nonlinear Schrödinger equation on compact manifolds, preprint 2001.
- [C] T. CazenaveAn introduction to nonlinear Schrödinger equations, Text. Met. Mat. 22, Inst. Mat., Rio de Janeiro, 1989.
- [CW] T. Cazenave, F. WeisslerThe Cauchy problem for the critical nonlinear Schrödinger equation in , Nonlinear Analysis, Theory, Methods and Applications, 1990, 807-836 Zbl0706.35127MR1055532
- [CdV] Y. Colin de VerdièreLe spectre des opérateurs elliptiques à bicaractéristiques toutes périodiques, Comment. Math. Helvetici 54 1979, 508-522. Zbl0459.58014MR543346
- [D] E. B. DaviesSpectral theory and differential operators, Cambridge University Press 1995. Zbl0893.47004MR1349825
- [GV1] J. Ginibre, G. VeloThe global Cauchy problem for the nonlinear Schrödinger equation, Ann. I.H.P. (Anal. non lin.) 2 1985, 309-327. Zbl0586.35042MR801582
- [GV2] J. Ginibre and G. VeloSmoothing properties and retarded estimates for some dispersive evolution equations, Commun. Math. Phys. 144 1992, 163-188. Zbl0762.35008MR1151250
- [Gr] E. GrosswaldRepresentations of Integers as Sums of Squares, Springer-Verlag, 1985. Zbl0574.10045MR803155
- [Gu] V. GuilleminLectures on spectral theory of elliptic operators, Duke Math. J. 44 1977, 129-137. Zbl0463.58024MR448452
- [HS] B. Helffer, J. SjöstrandEquation de Schrödinger avec champ magnetique et équation de Harper, Lecture notes in Physics, 345 1989, 118-197. Zbl0699.35189MR1037319
- [Ka] L. KapitanskiiSome generalizations of the Strichartz-B-Brenner inequality, Leningrad Math. J. 1 1990, 693-726. Zbl0732.35118MR1015129
- [K] T. KatoOn nonlinear Schrödinger equations, Ann. I.H.P. (Phys. Théor.) 46 1987, 113-129. Zbl0632.35038MR877998
- [KT] M. Keel, T. TaoEndpoint Strichartz estimates, Amer. J. Math. 120 1998, 955-980. Zbl0922.35028MR1646048
- [Leb] G. LebeauContrôle de l'équation de Schrödinger, J. Math. Pures Appl. 71 1992, 267-291. Zbl0838.35013MR1172452
- [ReSi] M. Reed, B. SimonMethods of Modern Mathematical Physics, vol.2, Academic Press, 1975. Zbl0308.47002MR751959
- [Ro] D. RobertAutour de l'approximation semi-classique Progress in Mathematics, vol. 68, Birkhäuser, 1987. Zbl0621.35001MR897108
- [Sogge] C. D. SoggeOscillatory integrals and spherical harmonics, Duke Math. J. 53 1986, 43-65. Zbl0636.42018MR835795
- [Sogge2] C. D. SoggeConcerning the norm of spectral clusters for second order elliptic operators on compact manifolds, J. Funct. Anal. 77 1988, 123-138. Zbl0641.46011MR930395
- [Sogge3] C. D. SoggeFourier integrals in classical analysis, Cambridge tracts in Mathematics, 1993. Zbl0783.35001MR1205579
- [SZ] C. D. Sogge, S. ZelditchRiemannian manifolds with maximal eigenfunction growth, Preprint 2001. MR1924569
- [StTa] G. Staffilani, D. TataruStrichartz estimates for a Schrödinger operator with nonsmooth coefficients, Preprint 2000. MR1924470
- [S] R. StrichartzRestriction of Fourier transforms to quadratic surfaces and decay of solutions of wave equations, Duke Math. J. 44 1977, 705-714. Zbl0372.35001MR512086
- [To] P. A. TomasA restriction theorem for the Fourier transform, Bull. Amer. Math. Soc. 81 1975, 477-478. Zbl0298.42011MR358216
- [Y] K. YajimaExistence of solutions for Schrödinger evolution equations, Commun. Math. Phys. 110 1987, 415-426. Zbl0638.35036MR891945
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.