The Schrödinger equation on a compact manifold : Strichartz estimates and applications

Nicolas Burq; Patrick Gérard; Nikolay Tzvetkov

Journées équations aux dérivées partielles (2001)

  • page 1-18
  • ISSN: 0752-0360

Abstract

top
We prove Strichartz estimates with fractional loss of derivatives for the Schrödinger equation on any riemannian compact manifold. As a consequence we infer global existence results for the Cauchy problem of nonlinear Schrödinger equations on surfaces in the case of defocusing polynomial nonlinearities, and on three-manifolds in the case of quadratic nonlinearities. We also discuss the optimality of these Strichartz estimates on spheres.

How to cite

top

Burq, Nicolas, Gérard, Patrick, and Tzvetkov, Nikolay. "The Schrödinger equation on a compact manifold : Strichartz estimates and applications." Journées équations aux dérivées partielles (2001): 1-18. <http://eudml.org/doc/93416>.

@article{Burq2001,
abstract = {We prove Strichartz estimates with fractional loss of derivatives for the Schrödinger equation on any riemannian compact manifold. As a consequence we infer global existence results for the Cauchy problem of nonlinear Schrödinger equations on surfaces in the case of defocusing polynomial nonlinearities, and on three-manifolds in the case of quadratic nonlinearities. We also discuss the optimality of these Strichartz estimates on spheres.},
author = {Burq, Nicolas, Gérard, Patrick, Tzvetkov, Nikolay},
journal = {Journées équations aux dérivées partielles},
keywords = {global existence results; optimality},
language = {eng},
pages = {1-18},
publisher = {Université de Nantes},
title = {The Schrödinger equation on a compact manifold : Strichartz estimates and applications},
url = {http://eudml.org/doc/93416},
year = {2001},
}

TY - JOUR
AU - Burq, Nicolas
AU - Gérard, Patrick
AU - Tzvetkov, Nikolay
TI - The Schrödinger equation on a compact manifold : Strichartz estimates and applications
JO - Journées équations aux dérivées partielles
PY - 2001
PB - Université de Nantes
SP - 1
EP - 18
AB - We prove Strichartz estimates with fractional loss of derivatives for the Schrödinger equation on any riemannian compact manifold. As a consequence we infer global existence results for the Cauchy problem of nonlinear Schrödinger equations on surfaces in the case of defocusing polynomial nonlinearities, and on three-manifolds in the case of quadratic nonlinearities. We also discuss the optimality of these Strichartz estimates on spheres.
LA - eng
KW - global existence results; optimality
UR - http://eudml.org/doc/93416
ER -

References

top
  1. [Besse] A. BesseManifolds all of whose geodesics are closed Springer-Verlag, Berlin-New York, 1978. Zbl0387.53010MR496885
  2. [Bo1] J. BourgainFourier transform restriction phenomena for certain lattice subsets and application to nonlinear evolution equations I. Schrödinger equations, Geom. and Funct. Anal. 3 1993, 107-156. Zbl0787.35097MR1209299
  3. [Bo2] J. BourgainExponential sums and nonlinear Schrödinger equations, Geom. and Funct. Anal. 3 1993, 157-178. Zbl0787.35096MR1209300
  4. [Bo3] J. BourgainGlobal solutions of nonlinear Schrödinger equations, Colloq. Publications, American Math. Soc., 1999. Zbl0933.35178MR1691575
  5. [Bo4] J. BourgainGlobal wellposedness of defocusing critical nonlinear Schrödinger equations in the radial case, J. Amer. Math. Soc. 12 1999, 145-171. Zbl0958.35126MR1626257
  6. [BG] H. Brézis, T. GallouëtNonlinear Schrödinger evolution equations, Nonlinear Analysis, Theory, Methods and Applications, 4 1980, 677-681. Zbl0451.35023MR582536
  7. [BGT] N. Burq, P. Gérard, N. TzvetkovStrichartz inequalities and the nonlinear Schrödinger equation on compact manifolds, preprint 2001. 
  8. [C] T. CazenaveAn introduction to nonlinear Schrödinger equations, Text. Met. Mat. 22, Inst. Mat., Rio de Janeiro, 1989. 
  9. [CW] T. Cazenave, F. WeisslerThe Cauchy problem for the critical nonlinear Schrödinger equation in H s , Nonlinear Analysis, Theory, Methods and Applications, 1990, 807-836 Zbl0706.35127MR1055532
  10. [CdV] Y. Colin de VerdièreLe spectre des opérateurs elliptiques à bicaractéristiques toutes périodiques, Comment. Math. Helvetici 54 1979, 508-522. Zbl0459.58014MR543346
  11. [D] E. B. DaviesSpectral theory and differential operators, Cambridge University Press 1995. Zbl0893.47004MR1349825
  12. [GV1] J. Ginibre, G. VeloThe global Cauchy problem for the nonlinear Schrödinger equation, Ann. I.H.P. (Anal. non lin.) 2 1985, 309-327. Zbl0586.35042MR801582
  13. [GV2] J. Ginibre and G. VeloSmoothing properties and retarded estimates for some dispersive evolution equations, Commun. Math. Phys. 144 1992, 163-188. Zbl0762.35008MR1151250
  14. [Gr] E. GrosswaldRepresentations of Integers as Sums of Squares, Springer-Verlag, 1985. Zbl0574.10045MR803155
  15. [Gu] V. GuilleminLectures on spectral theory of elliptic operators, Duke Math. J. 44 1977, 129-137. Zbl0463.58024MR448452
  16. [HS] B. Helffer, J. SjöstrandEquation de Schrödinger avec champ magnetique et équation de Harper, Lecture notes in Physics, 345 1989, 118-197. Zbl0699.35189MR1037319
  17. [Ka] L. KapitanskiiSome generalizations of the Strichartz-B-Brenner inequality, Leningrad Math. J. 1 1990, 693-726. Zbl0732.35118MR1015129
  18. [K] T. KatoOn nonlinear Schrödinger equations, Ann. I.H.P. (Phys. Théor.) 46 1987, 113-129. Zbl0632.35038MR877998
  19. [KT] M. Keel, T. TaoEndpoint Strichartz estimates, Amer. J. Math. 120 1998, 955-980. Zbl0922.35028MR1646048
  20. [Leb] G. LebeauContrôle de l'équation de Schrödinger, J. Math. Pures Appl. 71 1992, 267-291. Zbl0838.35013MR1172452
  21. [ReSi] M. Reed, B. SimonMethods of Modern Mathematical Physics, vol.2, Academic Press, 1975. Zbl0308.47002MR751959
  22. [Ro] D. RobertAutour de l'approximation semi-classique Progress in Mathematics, vol. 68, Birkhäuser, 1987. Zbl0621.35001MR897108
  23. [Sogge] C. D. SoggeOscillatory integrals and spherical harmonics, Duke Math. J. 53 1986, 43-65. Zbl0636.42018MR835795
  24. [Sogge2] C. D. SoggeConcerning the L p norm of spectral clusters for second order elliptic operators on compact manifolds, J. Funct. Anal. 77 1988, 123-138. Zbl0641.46011MR930395
  25. [Sogge3] C. D. SoggeFourier integrals in classical analysis, Cambridge tracts in Mathematics, 1993. Zbl0783.35001MR1205579
  26. [SZ] C. D. Sogge, S. ZelditchRiemannian manifolds with maximal eigenfunction growth, Preprint 2001. MR1924569
  27. [StTa] G. Staffilani, D. TataruStrichartz estimates for a Schrödinger operator with nonsmooth coefficients, Preprint 2000. MR1924470
  28. [S] R. StrichartzRestriction of Fourier transforms to quadratic surfaces and decay of solutions of wave equations, Duke Math. J. 44 1977, 705-714. Zbl0372.35001MR512086
  29. [To] P. A. TomasA restriction theorem for the Fourier transform, Bull. Amer. Math. Soc. 81 1975, 477-478. Zbl0298.42011MR358216
  30. [Y] K. YajimaExistence of solutions for Schrödinger evolution equations, Commun. Math. Phys. 110 1987, 415-426. Zbl0638.35036MR891945

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.