Changing blow-up time in nonlinear Schrödinger equations
Journées équations aux dérivées partielles (2003)
- page 1-12
- ISSN: 0752-0360
Access Full Article
topAbstract
topHow to cite
topCarles, Rémi. "Changing blow-up time in nonlinear Schrödinger equations." Journées équations aux dérivées partielles (2003): 1-12. <http://eudml.org/doc/93445>.
@article{Carles2003,
abstract = {Solutions to nonlinear Schrödinger equations may blow up in finite time. We study the influence of the introduction of a potential on this phenomenon. For a linear potential (Stark effect), the blow-up time remains unchanged, but the location of the collapse is altered. The main part of our study concerns isotropic quadratic potentials. We show that the usual (confining) harmonic potential may anticipate the blow-up time, and always does when the power of the nonlinearity is $L^2$-critical. On the other hand, introducing a “repulsive” harmonic potential prevents finite time blow-up, provided that this potential is sufficiently “strong”. For the $L^2$-critical nonlinearity, this mechanism is explicit : according to the strength of the potential, blow-up is first delayed, then prevented.},
author = {Carles, Rémi},
journal = {Journées équations aux dérivées partielles},
keywords = {finite time blow-up; Stark effect; harmonic potential; nonlinear Schrödinger equations; isotropic quadratic potentials; critical nonlinearity},
language = {eng},
pages = {1-12},
publisher = {Université de Nantes},
title = {Changing blow-up time in nonlinear Schrödinger equations},
url = {http://eudml.org/doc/93445},
year = {2003},
}
TY - JOUR
AU - Carles, Rémi
TI - Changing blow-up time in nonlinear Schrödinger equations
JO - Journées équations aux dérivées partielles
PY - 2003
PB - Université de Nantes
SP - 1
EP - 12
AB - Solutions to nonlinear Schrödinger equations may blow up in finite time. We study the influence of the introduction of a potential on this phenomenon. For a linear potential (Stark effect), the blow-up time remains unchanged, but the location of the collapse is altered. The main part of our study concerns isotropic quadratic potentials. We show that the usual (confining) harmonic potential may anticipate the blow-up time, and always does when the power of the nonlinearity is $L^2$-critical. On the other hand, introducing a “repulsive” harmonic potential prevents finite time blow-up, provided that this potential is sufficiently “strong”. For the $L^2$-critical nonlinearity, this mechanism is explicit : according to the strength of the potential, blow-up is first delayed, then prevented.
LA - eng
KW - finite time blow-up; Stark effect; harmonic potential; nonlinear Schrödinger equations; isotropic quadratic potentials; critical nonlinearity
UR - http://eudml.org/doc/93445
ER -
References
top- [1] J. Bourgain and W. Wang, Construction of blowup solutions for the nonlinear Schrödinger equation with critical nonlinearity, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 25 (1997), no. 1-2, 197-215 (1998). Zbl1043.35137MR1655515
- [2] C. C. Bradley, C. A. Sackett, and R. G. Hulet, Bose-Einstein condensation of Lithium: Observation of limited condensate number, Phys. Rev. Lett. 78 (1997), 985-989.
- [3] C. C. Bradley, C. A. Sackett, J. J. Tollett, and R. G. Hulet, Evidence of Bose-Einstein condensation in an atomic gas with attractive interactions, Phys. Rev. Lett. 75 (1995), 1687-1690.
- [4] R. Carles, Remarks on nonlinear Schrödinger equations with harmonic potential, Ann. H. Poincaré 3 (2002), no. 4, 757-772. Zbl1021.81013MR1933369
- [5] R. Carles, Critical nonlinear Schrödinger equations with and without harmonic potential, Math. Mod. Meth. Appl. Sci. (M3AS) 12 (2002), no. 10, 1513-1523. Zbl1029.35208MR1933935
- [6] R. Carles, Semi-classical Schrödinger equations with harmonic potential and nonlinear perturbation, Ann. Inst. H. Poincaré Anal. Non Linéaire, 20 (2003), no. 3, 501-542. Zbl1031.35119MR1972872
- [7] R. Carles, Nonlinear Schrödinger equations with repulsive harmonic potential and applications, SIAM J. Math. Anal., to appear. Zbl1054.35090MR2049023
- [8] R. Carles, C. Fermanian, and I. Gallagher, On the role of quadratic oscillations in nonlinear Schrödinger equations, J. Funct. Anal., to appear. Zbl1059.35134MR2003356
- [9] R. Carles and Y. Nakamura, Nonlinear Schrödinger equations with Stark potential, Hokkaido Math. J., to appear. Zbl1069.35083MR2049023
- [10] T. Cazenave, An introduction to nonlinear Schrödinger equations, Text. Met. Mat., vol. 26, Univ. Fed. Rio de Jan., 1993.
- [11] H. L. Cycon, R. G. Froese, W. Kirsch, and B. Simon, Schrödinger operators with application to quantum mechanics and global geometry, study ed., Texts and Monographs in Physics, Springer-Verlag, Berlin, 1987. Zbl0619.47005MR883643
- [12] T. Cazenave and F. Weissler, Rapidly decaying solutions of the nonlinear Schrödinger equation, Comm. Math. Phys. 147 (1992), 75-100. Zbl0763.35085MR1171761
- [13] A. de Bouard and A. Debussche, Explosion en temps fini pour l'équation de Schrödinger non linéaire stochastique, Séminaire X-EDP, 2002-2003, École Polytech., Exp. No. VII. MR2030702
- [14] A. de Bouard, A. Debussche and L. Di Menza, Theoretical and numerical aspects of stochastic nonlinear Schrödinger equations, Journées équations aux Dérivées Partielles, Plestin-les-Grèves, 2001, Exp. No. III. Zbl1005.35084MR1843404
- [15] R. P. Feynman and A.R. Hibbs, Quantum mechanics and path integrals (International Series in Pure and Applied Physics), Maidenhead, Berksh.: McGraw-Hill Publishing Company, Ltd., 365 p., 1965. Zbl0176.54902
- [16] R. T. Glassey, On the blowing up of solutions to the Cauchy problem for nonlinear Schrödinger equations, J. Math. Phys. 18 (1977), 1794-1797. Zbl0372.35009MR460850
- [17] E. B. Kolomeisky, T. J. Newman, J. P. Straley, and X. Qi, Low-dimensional Bose liquids: Beyond the Gross-Pitaevskii approximation, Phys. Rev. Lett. 85 (2000), no. 6, 1146-1149.
- [18] F. Merle, Blow-up phenomena for critical nonlinear Schrödinger and Zakharov equations, Proceedings of the International Congress of Mathematicians, Vol. III (Berlin, 1998), no. Extra Vol. III, 1998, pp. 57-66. Zbl0896.35123MR1648140
- [19] F. Merle and P. Raphaël, Blow up Dynamic and Upper Bound on the Blow up Rate fir critical nonlinear Schrödinger Equation, Journées équations aux Dérivées Partielles, Forges-les-Eaux, 2002, Exp. No. XII. Zbl1185.35263MR1968208
- [20] F. Merle and P. Raphaël, Sharp upper bound on blow up rate for critical non linear Schrödinger equation, Geom. Funct. Anal., to appear. Zbl1061.35135MR1995801
- [21] G. Perelman, On the formation of singularities in solutions of the critical nonlinear Schrödinger equation, Ann. H. Poincaré 2 (2001), no. 4, 605-673. Zbl1007.35087MR1852922
- [22] W. Thirring, A course in mathematical physics. Vol. 3, Springer-Verlag, New York, 1981, Quantum mechanics of atoms and molecules, Translated from the German by Evans M. Harrell, Lecture Notes in Physics, 141. Zbl0462.46046MR625662
- [23] T. Tsurumi, H. Morise, and M. Wadati, Stability of Bose-Einstein condensates confined in traps, Internat. J. Modern Phys. B 14 (2000), no. 7, 655-719.
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.