Semi-classical Schrödinger equations with harmonic potential and nonlinear perturbation

Rémi Carles

Annales de l'I.H.P. Analyse non linéaire (2003)

  • Volume: 20, Issue: 3, page 501-542
  • ISSN: 0294-1449

How to cite

top

Carles, Rémi. "Semi-classical Schrödinger equations with harmonic potential and nonlinear perturbation." Annales de l'I.H.P. Analyse non linéaire 20.3 (2003): 501-542. <http://eudml.org/doc/78588>.

@article{Carles2003,
author = {Carles, Rémi},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {semi-classical Schrödinger equation; harmonic potential; nonlinear perturbation; Strichartz inequalities},
language = {eng},
number = {3},
pages = {501-542},
publisher = {Elsevier},
title = {Semi-classical Schrödinger equations with harmonic potential and nonlinear perturbation},
url = {http://eudml.org/doc/78588},
volume = {20},
year = {2003},
}

TY - JOUR
AU - Carles, Rémi
TI - Semi-classical Schrödinger equations with harmonic potential and nonlinear perturbation
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2003
PB - Elsevier
VL - 20
IS - 3
SP - 501
EP - 542
LA - eng
KW - semi-classical Schrödinger equation; harmonic potential; nonlinear perturbation; Strichartz inequalities
UR - http://eudml.org/doc/78588
ER -

References

top
  1. [1] Bahouri H., Gérard P., Concentration effects in critical nonlinear wave equation, in: Colombini F., Lerner N. (Eds.), Geometrical Optics and Related Topics, Birkäuser, 1997, pp. 17-30. Zbl0926.35090MR2033489
  2. [2] Bahouri H., Gérard P., Optique géométrique généralisée pour les ondes non linéaires critiques, in: Séminaire sur les Équations aux Dérivées Partielles, 1996–1997, École Polytechnique, Palaiseau, 1997, Exp. VIII, 17. Zbl1068.35522MR1482814
  3. [3] Bahouri H., Gérard P., High frequency approximation of solutions to critical nonlinear wave equations, Amer. J. Math.121 (1) (1999) 131-175. Zbl0919.35089MR1705001
  4. [4] Carles R., Focusing on a line for nonlinear Schrödinger equations in R2, Asymptotic Anal.24 (3–4) (2000) 255-276. Zbl0977.35131MR1797772
  5. [5] Carles R., Geometric optics with caustic crossing for some nonlinear Schrödinger equations, Indiana Univ. Math. J.49 (2) (2000) 475-551. Zbl0970.35143MR1793681
  6. [6] Carles R., Équation de Schrödinger semi-classique avec potentiel harmonique et perturbation non-linéaire, in: Séminaire sur les Équations aux Dérivées Partielles, 2001–2002, École Polytechnique, Palaiseau, 2001, Exp. III, 12. 
  7. [7] Carles R., Geometric optics and long range scattering for one-dimensional nonlinear Schrödinger equations, Comm. Math. Phys.220 (1) (2001) 41-67. Zbl1029.35211MR1882399
  8. [8] Cazenave T., An Introduction to Nonlinear Schrödinger Equations, Text. Met. Mat., 26, Univ. Fed. Rio de Janeiro, 1993. 
  9. [9] Cazenave T., Weissler F., Rapidly decaying solutions of the nonlinear Schrödinger equation, Comm. Math. Phys.147 (1992) 75-100. Zbl0763.35085MR1171761
  10. [10] C. Cohen-Tannoudji, Cours du collège de France, 1998–99, available at: www.lkb.ens.fr/~laloe/PHYS/cours/college-de-france/. 
  11. [11] Duistermaat J.J., Oscillatory integrals, Lagrange immersions and unfolding of singularities, Comm. Pure Appl. Math.27 (1974) 207-281. Zbl0285.35010MR405513
  12. [12] Feynman R.P., Hibbs A.R., Quantum Mechanics and Path Integrals, International Series in Pure and Applied Physics, McGraw-Hill, Maidenhead, 1965, p. 365. Zbl0176.54902
  13. [13] Folland G., Harmonic Analysis in Phase Space, Annals of Mathematics Studies, 122, Princeton University Press, Princeton, NJ, 1989. Zbl0682.43001MR983366
  14. [14] Fujiwara D., Remarks on the convergence of the Feynman path integrals, Duke Math. J.47 (3) (1980) 559-600. Zbl0457.35026MR587166
  15. [15] Gallagher I., Gérard P., Profile decomposition for the wave equation outside a convex obstacle, J. Math. Pures Appl. (9)80 (1) (2001) 1-49. Zbl0980.35088MR1810508
  16. [16] Ginibre J., Introduction aux équations de Schrödinger non linéaires, Cours de DEA, Onze Édition, Paris, 1995. 
  17. [17] Ginibre J., An introduction to nonlinear Schrödinger equations, in: Agemi R., Giga Y., Ozawa T. (Eds.), Nonlinear Waves (Sapporo, 1995), GAKUTO International Series, Math. Sciences and Appl., Gakkōtosho, Tokyo, 1997, pp. 85-133. Zbl0891.35146MR1602772
  18. [18] Ginibre J., Velo G., Scattering theory in the energy space for a class of nonlinear Schrödinger equations, J. Math. Pures Appl. (9)64 (4) (1985) 363-401. Zbl0535.35069MR839728
  19. [19] Guillemin V., Sternberg S., Symplectic Techniques in Physics, Cambridge University Press, Cambridge, 1984. Zbl0576.58012MR770935
  20. [20] Hayashi N., Tsutsumi Y., Remarks on the scattering problem for nonlinear Schrödinger equations, in: Lectures Notes in Math., 1285, Springer, Berlin, 1987, pp. 162-168. Zbl0633.35059MR921265
  21. [21] Kapitanski L., Rodnianski I., Yajima K., On the fundamental solution of a perturbed harmonic oscillator, Topol. Methods Nonlinear Anal.9 (1) (1997) 77-106. Zbl0892.35035MR1483643
  22. [22] Kato T., Nonlinear Schrödinger equations, Ann. Inst. H. Poincaré Phys. Théor.46 (1987) 113-129. Zbl0632.35038MR877998
  23. [23] Keel M., Tao T., Endpoint Strichartz estimates, Amer. J. Math.120 (5) (1998) 955-980. Zbl0922.35028MR1646048
  24. [24] Merle F., Determination of blow-up solutions with minimal mass for nonlinear Schrödinger equations with critical power, Duke Math. J.69 (2) (1993) 427-454. Zbl0808.35141MR1203233
  25. [25] Nier F., A semi-classical picture of quantum scattering, Ann. Sci. École Norm. Sup. (4)29 (2) (1996) 149-183. Zbl0858.35106MR1373932
  26. [26] J. Rauch, Lectures on geometric optics, Available at: www.math.lsa.umich.edu/~rauch. Zbl0926.35003
  27. [27] Strichartz R.S., Restrictions of Fourier transforms to quadratic surfaces and decay of solutions of wave equations, Duke Math. J.44 (3) (1977) 705-714. Zbl0372.35001MR512086
  28. [28] Yajima K., Existence of solutions for Schrödinger evolution equations, Comm. Math. Phys.110 (1987) 415-426. Zbl0638.35036MR891945
  29. [29] Yajima K., Smoothness and non-smoothness of the fundamental solution of time dependent Schrödinger equations, Comm. Math. Phys.181 (3) (1996) 605-629. Zbl0883.35022MR1414302
  30. [30] Zelditch S., Reconstruction of singularities for solutions of Schrödinger's equation, Comm. Math. Phys.90 (1) (1983) 1-26. Zbl0554.35031MR714610

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.