Semi-classical Schrödinger equations with harmonic potential and nonlinear perturbation
Annales de l'I.H.P. Analyse non linéaire (2003)
- Volume: 20, Issue: 3, page 501-542
- ISSN: 0294-1449
Access Full Article
topHow to cite
topCarles, Rémi. "Semi-classical Schrödinger equations with harmonic potential and nonlinear perturbation." Annales de l'I.H.P. Analyse non linéaire 20.3 (2003): 501-542. <http://eudml.org/doc/78588>.
@article{Carles2003,
author = {Carles, Rémi},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {semi-classical Schrödinger equation; harmonic potential; nonlinear perturbation; Strichartz inequalities},
language = {eng},
number = {3},
pages = {501-542},
publisher = {Elsevier},
title = {Semi-classical Schrödinger equations with harmonic potential and nonlinear perturbation},
url = {http://eudml.org/doc/78588},
volume = {20},
year = {2003},
}
TY - JOUR
AU - Carles, Rémi
TI - Semi-classical Schrödinger equations with harmonic potential and nonlinear perturbation
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2003
PB - Elsevier
VL - 20
IS - 3
SP - 501
EP - 542
LA - eng
KW - semi-classical Schrödinger equation; harmonic potential; nonlinear perturbation; Strichartz inequalities
UR - http://eudml.org/doc/78588
ER -
References
top- [1] Bahouri H., Gérard P., Concentration effects in critical nonlinear wave equation, in: Colombini F., Lerner N. (Eds.), Geometrical Optics and Related Topics, Birkäuser, 1997, pp. 17-30. Zbl0926.35090MR2033489
- [2] Bahouri H., Gérard P., Optique géométrique généralisée pour les ondes non linéaires critiques, in: Séminaire sur les Équations aux Dérivées Partielles, 1996–1997, École Polytechnique, Palaiseau, 1997, Exp. VIII, 17. Zbl1068.35522MR1482814
- [3] Bahouri H., Gérard P., High frequency approximation of solutions to critical nonlinear wave equations, Amer. J. Math.121 (1) (1999) 131-175. Zbl0919.35089MR1705001
- [4] Carles R., Focusing on a line for nonlinear Schrödinger equations in R2, Asymptotic Anal.24 (3–4) (2000) 255-276. Zbl0977.35131MR1797772
- [5] Carles R., Geometric optics with caustic crossing for some nonlinear Schrödinger equations, Indiana Univ. Math. J.49 (2) (2000) 475-551. Zbl0970.35143MR1793681
- [6] Carles R., Équation de Schrödinger semi-classique avec potentiel harmonique et perturbation non-linéaire, in: Séminaire sur les Équations aux Dérivées Partielles, 2001–2002, École Polytechnique, Palaiseau, 2001, Exp. III, 12.
- [7] Carles R., Geometric optics and long range scattering for one-dimensional nonlinear Schrödinger equations, Comm. Math. Phys.220 (1) (2001) 41-67. Zbl1029.35211MR1882399
- [8] Cazenave T., An Introduction to Nonlinear Schrödinger Equations, Text. Met. Mat., 26, Univ. Fed. Rio de Janeiro, 1993.
- [9] Cazenave T., Weissler F., Rapidly decaying solutions of the nonlinear Schrödinger equation, Comm. Math. Phys.147 (1992) 75-100. Zbl0763.35085MR1171761
- [10] C. Cohen-Tannoudji, Cours du collège de France, 1998–99, available at: www.lkb.ens.fr/~laloe/PHYS/cours/college-de-france/.
- [11] Duistermaat J.J., Oscillatory integrals, Lagrange immersions and unfolding of singularities, Comm. Pure Appl. Math.27 (1974) 207-281. Zbl0285.35010MR405513
- [12] Feynman R.P., Hibbs A.R., Quantum Mechanics and Path Integrals, International Series in Pure and Applied Physics, McGraw-Hill, Maidenhead, 1965, p. 365. Zbl0176.54902
- [13] Folland G., Harmonic Analysis in Phase Space, Annals of Mathematics Studies, 122, Princeton University Press, Princeton, NJ, 1989. Zbl0682.43001MR983366
- [14] Fujiwara D., Remarks on the convergence of the Feynman path integrals, Duke Math. J.47 (3) (1980) 559-600. Zbl0457.35026MR587166
- [15] Gallagher I., Gérard P., Profile decomposition for the wave equation outside a convex obstacle, J. Math. Pures Appl. (9)80 (1) (2001) 1-49. Zbl0980.35088MR1810508
- [16] Ginibre J., Introduction aux équations de Schrödinger non linéaires, Cours de DEA, Onze Édition, Paris, 1995.
- [17] Ginibre J., An introduction to nonlinear Schrödinger equations, in: Agemi R., Giga Y., Ozawa T. (Eds.), Nonlinear Waves (Sapporo, 1995), GAKUTO International Series, Math. Sciences and Appl., Gakkōtosho, Tokyo, 1997, pp. 85-133. Zbl0891.35146MR1602772
- [18] Ginibre J., Velo G., Scattering theory in the energy space for a class of nonlinear Schrödinger equations, J. Math. Pures Appl. (9)64 (4) (1985) 363-401. Zbl0535.35069MR839728
- [19] Guillemin V., Sternberg S., Symplectic Techniques in Physics, Cambridge University Press, Cambridge, 1984. Zbl0576.58012MR770935
- [20] Hayashi N., Tsutsumi Y., Remarks on the scattering problem for nonlinear Schrödinger equations, in: Lectures Notes in Math., 1285, Springer, Berlin, 1987, pp. 162-168. Zbl0633.35059MR921265
- [21] Kapitanski L., Rodnianski I., Yajima K., On the fundamental solution of a perturbed harmonic oscillator, Topol. Methods Nonlinear Anal.9 (1) (1997) 77-106. Zbl0892.35035MR1483643
- [22] Kato T., Nonlinear Schrödinger equations, Ann. Inst. H. Poincaré Phys. Théor.46 (1987) 113-129. Zbl0632.35038MR877998
- [23] Keel M., Tao T., Endpoint Strichartz estimates, Amer. J. Math.120 (5) (1998) 955-980. Zbl0922.35028MR1646048
- [24] Merle F., Determination of blow-up solutions with minimal mass for nonlinear Schrödinger equations with critical power, Duke Math. J.69 (2) (1993) 427-454. Zbl0808.35141MR1203233
- [25] Nier F., A semi-classical picture of quantum scattering, Ann. Sci. École Norm. Sup. (4)29 (2) (1996) 149-183. Zbl0858.35106MR1373932
- [26] J. Rauch, Lectures on geometric optics, Available at: www.math.lsa.umich.edu/~rauch. Zbl0926.35003
- [27] Strichartz R.S., Restrictions of Fourier transforms to quadratic surfaces and decay of solutions of wave equations, Duke Math. J.44 (3) (1977) 705-714. Zbl0372.35001MR512086
- [28] Yajima K., Existence of solutions for Schrödinger evolution equations, Comm. Math. Phys.110 (1987) 415-426. Zbl0638.35036MR891945
- [29] Yajima K., Smoothness and non-smoothness of the fundamental solution of time dependent Schrödinger equations, Comm. Math. Phys.181 (3) (1996) 605-629. Zbl0883.35022MR1414302
- [30] Zelditch S., Reconstruction of singularities for solutions of Schrödinger's equation, Comm. Math. Phys.90 (1) (1983) 1-26. Zbl0554.35031MR714610
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.