Remarques sur l'invariant mu d'Iwasawa dans le cas CM

Roland Gillard

Journal de théorie des nombres de Bordeaux (1991)

  • Volume: 3, Issue: 1, page 13-26
  • ISSN: 1246-7405

How to cite

top

Gillard, Roland. "Remarques sur l'invariant mu d'Iwasawa dans le cas CM." Journal de théorie des nombres de Bordeaux 3.1 (1991): 13-26. <http://eudml.org/doc/93529>.

@article{Gillard1991,
author = {Gillard, Roland},
journal = {Journal de théorie des nombres de Bordeaux},
keywords = {Iwasawa -invariant; CM-fields; q-expansion of p-adic Eisenstein series},
language = {fre},
number = {1},
pages = {13-26},
publisher = {Université Bordeaux I},
title = {Remarques sur l'invariant mu d'Iwasawa dans le cas CM},
url = {http://eudml.org/doc/93529},
volume = {3},
year = {1991},
}

TY - JOUR
AU - Gillard, Roland
TI - Remarques sur l'invariant mu d'Iwasawa dans le cas CM
JO - Journal de théorie des nombres de Bordeaux
PY - 1991
PB - Université Bordeaux I
VL - 3
IS - 1
SP - 13
EP - 26
LA - fre
KW - Iwasawa -invariant; CM-fields; q-expansion of p-adic Eisenstein series
UR - http://eudml.org/doc/93529
ER -

References

top
  1. [Ba] D. Barsky, Sur la norme des séries d'Iwasawa, Groupe d'étude ultramétrique, 10 ème année expo. 13, 44 p. 
  2. [Co] J. Coates, On p-adic L functions, sém. Bourbaki701 (1988), astérisque177-178 (1989). Zbl0706.11064MR1040567
  3. [D] P. Deligne, Valeurs de fonctions L et périodes d'intégrales, proceedings of symp. math. in pure Math. 33 (1979), 313-346. Zbl0449.10022MR546622
  4. [F] W.B. Ferrero and L. Washington, The Iwasawa invariant μp vanishes for abelian number fields, Ann. Math.109 (1979), 377-395. Zbl0443.12001
  5. [G1] R. Gillard, Fonctions L.p-adiques des corps quadratiques imaginaires et de leurs extensions abéliennes, J. reine ang. Math.358 (1985), 76-91. Zbl0551.12011MR797675
  6. [G2] R. Gillard, Relations monomiales entre périodes p-adiques, Inv. Math.93 (1988), 355-381. Zbl0658.14023MR948105
  7. [H] H. Hida, On p-adic L- functions of GL(2) × GL(2) over totally real fields, preprint. Zbl0725.11025MR1137290
  8. [HT] H. Hida and J. Tilouine, Anticyclotomic Katz p-adic L functions and congruence modules, à paraître. Zbl0778.11061
  9. [I1] Iwasawa K., On Γ-extensions of algebraic number fields,, Bull. Am. Math. Soc.65 (1959), 183-226. Zbl0089.02402
  10. [12] Iwasawa K., On the μ invariant of Zl-extensions in Number Theory, algebraic geometry and commutative algebra, KinokonuyaTokyo (1973), 1-11. Zbl0281.12005
  11. [K1] N.M. Katz, Serre-Tate local moduli,, In " Surfaces algébriques", Lec. Notes in Math.868, 138-202, Springer1978. Zbl0477.14007MR638600
  12. [K2] N.M. Katz, p-adic L- functions for CM fields, Invent. Math.49 (1978), 199-297. Zbl0417.12003MR513095
  13. [K3] N.M. Katz, p-adic L- functions, Serre-Tate local moduli and ratio of solutions of differential equations, Proc. Int. Congress Math. Helsinki (1978), 365-371. Zbl0439.12010MR562628
  14. [K4] N.M. Katz, Another look at p-adic L -functions for totally real fields, Math. Ann.255 (1981), 33-43. Zbl0497.14006MR611271
  15. [Sc] L. Schneps, On the μ-invariant of p-adic L-functions attached to Elliptic curves with complex multiplication, J. Nb. Th.25 (1987), 20-33. Zbl0615.12018
  16. [Si] W. Sinnott, On the μ-invariant of the Γ-transform of a rational function, Inv. Math.75 (1984), 273-282—. Zbl0531.12004

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.