Nombre maximum de points rationnels d'une courbe sur un corps fini

M. Perret

Journal de théorie des nombres de Bordeaux (1991)

  • Volume: 3, Issue: 2, page 261-274
  • ISSN: 1246-7405

How to cite

top

Perret, M.. "Nombre maximum de points rationnels d'une courbe sur un corps fini." Journal de théorie des nombres de Bordeaux 3.2 (1991): 261-274. <http://eudml.org/doc/93540>.

@article{Perret1991,
author = {Perret, M.},
journal = {Journal de théorie des nombres de Bordeaux},
keywords = {number of rational points; genus},
language = {fre},
number = {2},
pages = {261-274},
publisher = {Université Bordeaux I},
title = {Nombre maximum de points rationnels d'une courbe sur un corps fini},
url = {http://eudml.org/doc/93540},
volume = {3},
year = {1991},
}

TY - JOUR
AU - Perret, M.
TI - Nombre maximum de points rationnels d'une courbe sur un corps fini
JO - Journal de théorie des nombres de Bordeaux
PY - 1991
PB - Université Bordeaux I
VL - 3
IS - 2
SP - 261
EP - 274
LA - fre
KW - number of rational points; genus
UR - http://eudml.org/doc/93540
ER -

References

top
  1. [1] V.G. Drinfel'd et S.G. Vladut, Number of points of an algebraic curve, Funktsional'nyi Analiz i Ego Prilozheniya17 (1983), 53-54. Zbl0522.14011MR695100
  2. [2] R. Hartshorne, Algebraic Geometry, Graduate Texts in Mathematics52, Springer (1977). Zbl0367.14001MR463157
  3. [3] Y. Ihara, Some remarks on the number of rational points of algebraic curves over finite fields, Journ. Fac. Sc. Tokyo, sec. 1. A, 28 (1982), 721-724.. Zbl0509.14019MR656048
  4. [4] G. Lachaud, Les codes géométriques de Goppa, Séminaire Bourbaki 1884/85, exp. 641, Astérisque133-134 (1986), p. 189-207. Zbl0603.94010MR837220
  5. [5] G. Lachaud, Artin-Shreier curves, exponential sums and the Carlitz-Uchiyama bound for geometric codes, Journ. of Numb. Theory, vol 39, (1991), 18-40. Zbl0741.11048MR1123166
  6. [6] J. Martinet, Tours de corps de classes et estimations de discriminants, Mathematicae (1978), 65-73. Zbl0369.12007MR460281
  7. [7] M. Perret, Tours ramifiées infinies de corps de classes, Journ. of Numb. Theory, vol 38, (1991), 300-322. Zbl0741.11044MR1114481
  8. [8] M. Perret, Multiplicative character sums and Kummer coverings, Acta Arith.59 n 3 (1991), 75-86. Zbl0746.11056MR1133247
  9. [9] J.P. Serre, Groupes algebriques et corps de classes, Hermann, Paris, 1959. Zbl0097.35604MR103191
  10. [10] J.P. Serre, Zeta and L functions, Arithmetical Algebraic Geometry, Harper and Row, New York (1965), p. 82-92; = Oeuvres, t. II, n 64, p. 249-259, Springer, Berlin, 1986. Zbl0171.19602MR194396
  11. [11] J.P. Serre, Nombre de points des courbes algebriques sur Fq, Séminaire de Théorie des nombres de Bordeaux, 1982/83; = Oeuvres, t. III, n 129, p. 664-668, Springer, Berlin, 1986. Zbl0538.14016
  12. [12] J.P. Serre, cours au collège de France 1982/83 (non publié), notes de M. Waldschmidt. 
  13. [13] M.A. Tsfasman, S.G. Vladut, T. Zink, Modular curves, Shimura curves, and Goppa codes, better than the Varshamov-Gilbert bound, Math. Nachr109 (1982), p. 21-28. Zbl0574.94013MR705893
  14. [14] A. Weil, Variétés Abéliennes et courbes algébriques, Hermann, Paris, 1948. Zbl0037.16202MR29522
  15. [15] J. Wolfmann, Nombre de points rationnels sur les courbes algébriques sur les corps finis associés à des codes cycliques, Comptes Rendus de l'Académie des Sciences de Paris305, Ser. I (1987), p. 345-348. Zbl0632.14022
  16. [16] J. Wolfmann, Polynomial description of binary linear codes and related topics, à paraître au journal of AAECC, Springer. Zbl0748.94005

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.