Sur les singularités de van Hove génériques

Yves Colin de Verdière

Mémoires de la Société Mathématique de France (1991)

  • Volume: 46, page 99-109
  • ISSN: 0249-633X

How to cite

top

Colin de Verdière, Yves. "Sur les singularités de van Hove génériques." Mémoires de la Société Mathématique de France 46 (1991): 99-109. <http://eudml.org/doc/94897>.

@article{ColindeVerdière1991,
author = {Colin de Verdière, Yves},
journal = {Mémoires de la Société Mathématique de France},
keywords = {generic Van Hove singularities; simplicity; Schrödinger operator with periodic electric potential; density of states; singularities; Floquet eigenvalues; Bloch theory; Morse property},
language = {fre},
pages = {99-109},
publisher = {Société mathématique de France},
title = {Sur les singularités de van Hove génériques},
url = {http://eudml.org/doc/94897},
volume = {46},
year = {1991},
}

TY - JOUR
AU - Colin de Verdière, Yves
TI - Sur les singularités de van Hove génériques
JO - Mémoires de la Société Mathématique de France
PY - 1991
PB - Société mathématique de France
VL - 46
SP - 99
EP - 109
LA - fre
KW - generic Van Hove singularities; simplicity; Schrödinger operator with periodic electric potential; density of states; singularities; Floquet eigenvalues; Bloch theory; Morse property
UR - http://eudml.org/doc/94897
ER -

References

top
  1. [A-M] N. ASIICROFT et N. MERMIN.— Solid states physics, Holt, Rinehart et Winston, 1976. 
  2. [AR] V. ARNOLD. — Modes and quasi-modes, Functional analysis and its applications, 6 (1972), 94-101. Zbl0251.70012MR45 #6331
  3. [BY] M. BERRY. — Quantal phase factors accompanying adiabatic changes, Proc. R. Soc. Lond., A 392 (1984), 45-57. Zbl1113.81306MR85i:81022
  4. [B-W] M. BERRY et M. WILKINSON. — Diabolical points in the spectra of triangles, Proc. R. Soc. Lond., A 392 (1984), 15-43. Zbl1113.81307MR85e:81021
  5. [C-K] Y. COLIN DE VERDIÈRE et T. KAPPELER. — On double eigenvalues of Hill's operator, J. of Funct. Analysis, 86 (1989), 127-135. Zbl0697.47050MR91b:34143
  6. [D-T] B. DAHLBERG et E. TRUBOWITZ. — A remark on two dimensional periodic potential, Comment. Math. Helvetici, 57 (1982), 130-134. Zbl0539.35059MR84h:35119
  7. [F-K-T] J. FELDMAN, H. KNOERRER et E. TRUBOWITZ. — The perturbatively stable spectrum of a periodic Schrödinger operator, ETH, (1989). 
  8. [G-K-T] D. GIESEKER, H. KNOERRER et E. TRUBOWITZ. — An overview of the geometry of algebraic Fermi curves, Preprint ETH, (1989). 
  9. [R-S, IV] M. REED et B. SIMON. — Methods of modern mathematical physics, t. 4 : analysis of operators, Academic press, 1978. Zbl0401.47001MR58 #12429c
  10. [SK1] M. SKRIGANOV. — The spectrum band structure of the three-dimensional Schrödinger operator with periodic potential, Invent. Math., 80 (1985), 107-121. Zbl0578.47003MR86i:35107
  11. [SK2] M. SKRIGANOV. — Geometric and arithmetic methods in the spectral theory of multidimensional periodic operators, Proc. Steklov Inst. Math., 171 (1987), 1-121. Zbl0615.47004MR88g:47038
  12. [UK] K. UHLENBECK. — Generic properties of eigenfunctions, American J. of Math., 98 (1976), 1059-1078. Zbl0355.58017MR57 #4264
  13. [VH] L. VAN HOVE. — The occurence of singularities in the elastic frequency distribution of a cristal, Phys. Rev., 89 (1953), 1189-1193. Zbl0050.23605MR15,88c
  14. [V-W] J. VON NEUMANN et E. WIGNER. — Ueber das Verhalten von Eigenwerten bei adiabatischen Prozessen, Physik. Zeitschr., 30 (1929), 467-470. JFM55.0520.05
  15. [ZE] S. ZELDITCH. — On the spectrum of a Riemannian cover, Ann. Inst. Fourier (soumis), (1989). Zbl0722.58044

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.