Décomposition des difféomorphismes du tore en applications déviant la verticale (avec un appendice en collaboration avec Jean-Marc Gambaudo)

Patrice Le Calvez

Mémoires de la Société Mathématique de France (1999)

  • Volume: 79, page III3-VII148
  • ISSN: 0249-633X

How to cite

top

Le Calvez, Patrice. "Décomposition des difféomorphismes du tore en applications déviant la verticale (avec un appendice en collaboration avec Jean-Marc Gambaudo)." Mémoires de la Société Mathématique de France 79 (1999): III3-VII148. <http://eudml.org/doc/94930>.

@article{LeCalvez1999,
author = {Le Calvez, Patrice},
journal = {Mémoires de la Société Mathématique de France},
keywords = {rotation number; periodic orbit; Conley-Zehnder theorem; area preserving homomorphism; singularities},
language = {fre},
pages = {III3-VII148},
publisher = {Société mathématique de France},
title = {Décomposition des difféomorphismes du tore en applications déviant la verticale (avec un appendice en collaboration avec Jean-Marc Gambaudo)},
url = {http://eudml.org/doc/94930},
volume = {79},
year = {1999},
}

TY - JOUR
AU - Le Calvez, Patrice
TI - Décomposition des difféomorphismes du tore en applications déviant la verticale (avec un appendice en collaboration avec Jean-Marc Gambaudo)
JO - Mémoires de la Société Mathématique de France
PY - 1999
PB - Société mathématique de France
VL - 79
SP - III3
EP - VII148
LA - fre
KW - rotation number; periodic orbit; Conley-Zehnder theorem; area preserving homomorphism; singularities
UR - http://eudml.org/doc/94930
ER -

References

top
  1. [An1] S. B. ANGENENT. The periodic orbits of an area preserving twist map, Commun. Math. Phys., 115 (1988), 353-374. Zbl0665.58034MR89f:58118
  2. [An2] S. B. ANGENENT. Monotone recurrence relations, their Birkhoff orbits and topological entropy, Ergod. Th. Dynam. Sys., 10 (1990), 15-41. Zbl0667.58036MR91b:58181
  3. [AG] S. B. ANGENENT, C. GOLÉ. Lamination by ghost circles, preprint, E.T.H. Zurich, (1991). 
  4. [Arno] V. I. ARNOLD. Méthodes mathématiques de la mécanique classique, Editions MIR. Zbl0385.70001
  5. [Arna] M.-C. ARNAUD. Le "closing lemma" en topologie C1, Mémoires Soc. Math. France, 74 (1998). Zbl0920.58039MR99h:58097
  6. [Ba] V. BANGERT. On the existence of closed geodesics on two-spheres, International. J. of Math., 4 (1993), 1-10. Zbl0791.53048MR94d:58036
  7. [Bi] G. BIRKHOFF. Extensions of Jentzsch's theorem, Trans. Amer. Math. Soc., 85 (1957), 219-227. Zbl0079.13502MR19,296a
  8. [Bi2] G. D. BIRKHOFF. An extension of Poincaré's last Geometric theorem, Acta Math., 47 (1925), 297-311. JFM52.0573.02
  9. [Br] L. E. J. BROUWER. Beweis des ebenen Translationssatzes, Math. Ann., 72 (1912), 37-54. Zbl43.0569.02JFM43.0569.02
  10. [BM] C. BAESENS, R. S. MAC KAY. Gradient dynamics of tilted Frenkel-Kontorova models, Nonlinearity, 11 (1998), 949-964. Zbl0906.58037MR99i:58134
  11. [Ca] C. CARATHÉODORY. Untersuchungen űber die konforme Abbildungen von festen und ver a t t ¨ãnderlichen Gebieten, Math. Ann., 72 (1912), 107-144. JFM43.0524.01
  12. [Ce] J. CERF. Topologie de certains espaces de plongements, Bull. Soc. Math. France, 89 (1961), 227-380. Zbl0101.16001MR25 #3543
  13. [Cha] M. CHAPERONUne idée du type "géodésiques brisées" pour les systèmes hamiltoniens, C. R. Acad. Sc. Paris, 298 (1984), 293-296. Zbl0576.58010MR86f:58049
  14. [Che] YU. V. CHEKANOV. Critical points of quasifunctions and generating families of Legendrian manifolds, Funktsional. Anal. i Prilozhen, 30 (1996), 56-69. Zbl0873.58017MR97f:58016
  15. [Co] C. CONLEY. Isolated invariant sets and the Morse index, Conference board of the Mathematical Sciences, 38 (1978). Zbl0397.34056MR80c:58009
  16. [CE] C. CONLEY, R. EASTON. Isolated invariant sets and isolating blocks, Trans. Amer. Math. Soc., 158 (1971), 35-61. Zbl0223.58011MR43 #5551
  17. [CZ] C. CONLEY, E. ZEHNDER. The Birkhoff-Lewis fixed point theorem and a conjecture of V.I. Arnold, Invent. Math., 73 (1983), 33-49. Zbl0516.58017MR85e:58044
  18. [Ep] D. EPSTEIN. Curves on 2-manifolds and isotopies, Acta. Math., 115 (1966), 83-107. Zbl0136.44605MR35 #4938
  19. [EE] C. EARLE, J. EELLS. A fibre bundle description of teichműller theory, J. Diff. Geom., 4 (1970), 169-185. Zbl0185.32901
  20. [FLP] A. FATHI, F. LAUDENBACH, V. POENARU. Travaux de Thurston sur les surfaces, Astérisque, Soc. Math. France, 66-67 (1979), 621-626. Zbl0406.00016MR82m:57003
  21. [Flo] A. FLOER. A refinement of Conley index and an application to the stability of hyperbolic invariant sets. Ergod. Th. Dynam. Sys., 7 (1987), 93-103. Zbl0633.58040MR88g:58143
  22. [Flu] M. FLUCHER. Fixed points of measure preserving homeomorphisms, Manuscripta Math., 68 (1990), 271-293. Zbl0722.58027MR91j:58129
  23. [Fr1] J. FRANKS. Generalizations of the Poincaré-Birkhoff theorem, Annals of Math., 128 (1988), 139-151. Zbl0676.58037MR89m:54052
  24. [Fr2] J. FRANKS. A variation on the Poincaré-Birkhoff Theorem, Contemp. Math., 81 (1988), 139-151. Zbl0676.58037MR90e:58095
  25. [Fr3] J. FRANKS. Geodesics on S2 and periodic points of annulus homeomorphisms, Invent. Math., 108 (1992), 403-418. Zbl0766.53037MR93f:58192
  26. [Fr4] J. FRANKS. Area preserving homeomorphisms of open surfaces of genus zero, New York J. Math., 2 (1996), 1-19. Zbl0891.58033MR97c:58123
  27. [GL] J.-M. GAMBAUDO, P. LE CALVEZ. Infinité d'orbites périodiques pour les homéomorphismes conservatifs de l'anneau, ce volume. 
  28. [Go] C. GolÉ. Ghost circles for twist maps, J. Diff. Equations, 97 (1992), 140-173. Zbl0777.58035MR93h:58115
  29. [Gr] A. GRAMAIN, Le type d'homotopie du groupe des difféomorphismes d'une surface, Ann. Scient. Ec. Norm. Sup., 6 (1973), 53-66. Zbl0265.58002MR48 #5116
  30. [Gu] L. GUILLOU. Théorème de translation plane de Brouwer et généralisations du théorème de Poincaré-Birkhoff, Topology, 33 (1990), 331-351. Zbl0924.55001MR95h:55003
  31. [Ha] M. HAMSTROM. Homotopy groups of the space of homeomorphisms on a 2-manifold. Illinois J. Math.,.10 (1966), 563-573. Zbl0151.33002MR34 #2014
  32. [HZ] H. HOFER, E. ZEHNDER. Symplectic invariants and Hamiltonian dynamics, Birkhaüser, Basel, Boston, Berlin, (1994). Zbl0805.58003MR96g:58001
  33. [K] B. DE KÉRÉKJÁRTÓ. The plane translation theorem of Brouwer and the last geometric theorem of Poincaré, Acta Sci. Math. Szeged, 4 (1928-1929), 86-102. Zbl54.0612.02JFM54.0612.02
  34. [L] P. LE CALVEZ. Décomposition des difféomorphismes du tore en applications déviant la verticale, ce volume. 
  35. [L1] P. LE CALVEZ. Propriétés dynamiques de l'anneau et du tore, Astérisque, Soc. Math. France, 204 (1991). Zbl0784.58033MR94d:58092
  36. [L2] P. LE CALVEZ. Une généralisation du théorème de Conley-Zehnder au tore de dimension 2, Ergod. Th. Dynam. Syst., 17 (1997), 71-80. Zbl0877.58011MR98j:58093
  37. [L3] P. LE CALVEZ. Construction d'orbites périodiques par perturbation d'un difféomorphisme de l'anneau déviant la verticale, C.R. Acad. Sci. Paris, 321 (1995), 463-468. Zbl0854.57023MR96h:58144
  38. [LM] R. LUKE, W. MASON. The space of homeomorphisms on a compact 2-manifold is an A.N.R., Trans. Amer. Math. Soc., 164 (1972), 275-285. Zbl0235.57002MR46 #849
  39. [MS] R. MAC KAY, J. STARCK. Lectures on orbits of minimal action for area-presering maps, preprint, University of Warwick, (1985). 
  40. [Ma] J. N. MATHER. Amount of rotation about a point and the Morse index, Commun. Math. Phys., 21 (1982), 457-467. MR84g:58084
  41. [Mo] P. VAN MORBEKE. The spectrum of Jacobi Matrices, Inventiones math., 37 (1976), 45-81. Zbl0361.15010MR58 #31226
  42. [PR] C. PUGH, C. ROBINSON. The closing lemma including Hamiltonians Ergod. Th. Dynam. Sys. 3 (1983), 261-313 Zbl0548.58012MR85m:58106
  43. [Ra] T. RADO. Sur la représentation conforme des domaines variables, Acta. Sci. Math. Szeged, 1 (1923), 180-186. Zbl49.0247.03JFM49.0247.03
  44. [Ru] D. RUELLE. Analycity properties of the characteristic exponents of random matrix products, Adv. in Math, 32 (1979), 68-80. Zbl0426.58018MR80e:58035
  45. [S] S. SCHWARTZMAN. Asymptotic cycles. Ann. of Maths, 68 (1957), 270-284. Zbl0207.22603MR19,568i
  46. [Sh] M. SHUB. Stabilité globale des systèmes dynamiques, Astérisque, Soc. Math. France, 56 (1978). Zbl0396.58014MR80c:58015
  47. [Si] J.-C. SIKORAV. Problème d'intersection et de points fixes en géométrie hamiltonienne, Comm. Math. Helvet., 62 (1987), 62-73. Zbl0684.58015MR88g:58067
  48. [Sm] S. SMALE. Diffeomorphisms of the 2-sphere, Proc. Amer. Math. Soc., 10 (1959), 621-626. Zbl0118.39103MR22 #3004
  49. [T] W. P. THURSTON. On the geometry and dynamic of diffeomorphisms of surfaces, Bull. Amer. Math. Soc., 19 (1988), 417-431. Zbl0674.57008MR89k:57023
  50. [V] C. VITERBO. Symplectic topology as the geometry of generating functions, Math. Ann., 292 (1992), 685-710. Zbl0735.58019MR93b:58058
  51. [Wh] H. WHITNEY. Analytic extensions of differentiable functions defined in closed sets. Trans. Amer. Math. Soc., 36 (1934), 63-89. Zbl0008.24902MR1501735JFM60.0217.01
  52. [Wi] H. E. WINLELNKEMPER. Twist maps, covering and Brouwer's translation theorem, Trans. Amer. Math. Soc., 267 (1981), 585-593. Zbl0474.58015MR84c:58069

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.