Indian kolam, drawings on the sand in the Vanuatu Islands, Sierpinski curve, and morphisms of monoids
Gabrielle Allouche[1]; Jean-Paul Allouche[2]; Jeffrey Shallit[3]
- [1] 24 rue Marceau 37000 Tours (France)
- [2] CNRS, LRI, Bâtiment 490 91405 Orsay Cedex (France)
- [3] University of Waterloo School of Computer Science Waterloo, Ontario N2L 3G1 (Canada)
Annales de l’institut Fourier (2006)
- Volume: 56, Issue: 7, page 2115-2130
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topAllouche, Gabrielle, Allouche, Jean-Paul, and Shallit, Jeffrey. "Kolam indiens, dessins sur le sable aux îles Vanuatu, courbe de Sierpinski et morphismes de monoïde." Annales de l’institut Fourier 56.7 (2006): 2115-2130. <http://eudml.org/doc/10199>.
@article{Allouche2006,
abstract = {Nous montrons que le tracé d’un kolam indien classique, que l’on retrouve aussi dans la tradition des dessins sur le sable aux îles Vanuatu, peut être engendré par un morphisme de monoïde. La suite infinie morphique ainsi obtenue est reliée à la célèbre suite de Prouhet-Thue-Morse, mais elle n’est $k$-automatique pour aucun entier $k \ge 1$.},
affiliation = {24 rue Marceau 37000 Tours (France); CNRS, LRI, Bâtiment 490 91405 Orsay Cedex (France); University of Waterloo School of Computer Science Waterloo, Ontario N2L 3G1 (Canada)},
author = {Allouche, Gabrielle, Allouche, Jean-Paul, Shallit, Jeffrey},
journal = {Annales de l’institut Fourier},
keywords = {kolam; drawings on the sand; Sierpinski curve; morphisms of monoid; automatic sequences},
language = {fre},
number = {7},
pages = {2115-2130},
publisher = {Association des Annales de l’institut Fourier},
title = {Kolam indiens, dessins sur le sable aux îles Vanuatu, courbe de Sierpinski et morphismes de monoïde},
url = {http://eudml.org/doc/10199},
volume = {56},
year = {2006},
}
TY - JOUR
AU - Allouche, Gabrielle
AU - Allouche, Jean-Paul
AU - Shallit, Jeffrey
TI - Kolam indiens, dessins sur le sable aux îles Vanuatu, courbe de Sierpinski et morphismes de monoïde
JO - Annales de l’institut Fourier
PY - 2006
PB - Association des Annales de l’institut Fourier
VL - 56
IS - 7
SP - 2115
EP - 2130
AB - Nous montrons que le tracé d’un kolam indien classique, que l’on retrouve aussi dans la tradition des dessins sur le sable aux îles Vanuatu, peut être engendré par un morphisme de monoïde. La suite infinie morphique ainsi obtenue est reliée à la célèbre suite de Prouhet-Thue-Morse, mais elle n’est $k$-automatique pour aucun entier $k \ge 1$.
LA - fre
KW - kolam; drawings on the sand; Sierpinski curve; morphisms of monoid; automatic sequences
UR - http://eudml.org/doc/10199
ER -
References
top- J.-P. Allouche, A. Arnold, J. Berstel, S. Brlek, W. Jockusch, S. Plouffe, B. E. Sagan, A relative of the Thue-Morse sequence, Discrete Math. 139 (1995), 455-461 Zbl0839.11007MR1336854
- J.-P. Allouche, J. L. Davison, M. Queffélec, L. Q. Zamboni, Transcendence of Sturmian or morphic continued fractions, J. Number Theory 91 (2001), 39-66 Zbl0998.11036MR1869317
- J.-P. Allouche, M. Mendès France, Automata and automatic sequences, Beyond quasicrystals (1995), 293-367, AxelF.F., Les Houches, 1994 Zbl0881.11026MR1420422
- J.-P. Allouche, J. Shallit, The ubiquitous Prouhet-Thue-Morse sequence, Sequences and Their Applications (1999), 1-16, Springer Zbl1005.11005MR1843077
- J.-P. Allouche, J. Shallit, Automatic Sequences : Theory, Applications, Generalizations, (2003), Cambridge University Press Zbl1086.11015MR1997038
- M. Ascher, Ethnomathematics : A Multicultural View of Mathematical Ideas, (1991), Pacific Grove, CA and Chapman & Hall, New York Zbl0855.01002MR1343249
- M. Ascher, Mathématiques d’ailleurs. Nombres, formes et jeux dans les sociétés traditionnelles, Le Seuil, Paris (1998)
- M. Ascher, Mathematics Elsewhere : An Exploration of Ideas Across Cultures, (2002), Princeton University Press Zbl1115.01003MR1918532
- M. Ascher, Les figures de kolam en Inde du sud, Dossier Pour La Science, Mathématiques Exotiques (2005), 53-57
- A. Belotserkovets, Propriétés combinatoires de suites symboliques qui codent des courbes de Péano, (2003)
- S. Brlek, Enumeration of factors in the Thue-Morse word, Discrete Appl. Math. 24 (1989), 83-96 Zbl0683.20045MR1011264
- L. Carlitz, R. Scoville, V. E. Hoggatt, Jr., Representations for a special sequence, Fibonacci Quart. 10 (1972), 499-518, 550 Zbl0255.05001MR319880
- J. Cassaigne, Limit values of the recurrence quotient of Sturmian sequences, Theoret. Comput. Sci. 218 (1999), 3-12 Zbl0916.68115MR1687748
- A. Cobham, Uniform tag sequences, Math. Systems Theory 6 (1972), 164-192 Zbl0253.02029MR457011
- F. Durand, A generalization of Cobham’s theorem, Theory Comput. Syst. 31 (1998), 169-185 Zbl0895.68081MR1491657
- P. Gerdes, Une tradition géométrique en Afrique, les dessins sur le sable, I, II & III, (1995), L’Harmattan Zbl0839.01003
- P. Gerdes, Ethnomathematics as a new research field, illustrated by studies of mathematical ideas in African history. Filling a Gap in the History of Science., Science and Cultural Diversity (2001) Zbl1093.01003
- R. W. Hall, A course in multicultural mathematics
- S. Kitaev, T. Mansour, P. Séébold, Generating the Peano curve and counting occurrences of some patterns, J. Autom. Lang. Comb. 9 (2004), 439-455 Zbl1083.68092MR2198708
- M. G. Norman, P. Moscato, The euclidean traveling salesman problem and a space-filling curve, Chaos, Solitons and Fractals 6 (1995), 389-397 Zbl0906.68073
- L. K. Platzman, J. J. Bartholdi III, Spacefilling curves and the planar travelling salesman problem, J. Assoc. Comput. Mach. 36 (1989), 719-737 Zbl0697.68047MR1072243
- P. Prusinkiewicz, F. F. Samavati, C. Smith, R. Karwowski, L-System description of subdivision curves, Int. J. Shape Model. 9 (2003), 41-59 Zbl1099.65506
- A. Rosenfeld, R. Siromoney, Picture languages : a survey, Languages of Design 1 (1993), 229-245
- O. Salon, Suites automatiques à multi-indices, Sém. Théor. Nombres Bordeaux (1986-1987) Zbl0653.10049
- P. Séébold, Tag-systems for the Hilbert curve Zbl1152.68491
- P. Séébold, The Peano curve and iterated morphisms, 10 Journées Montoises d’Informatique Théorique, Liège (Belgique) (2004), 338-351
- P. Séébold, K. Slowinski, The shortest way to draw a connected picture, Computer Graphics Forum 10 (1991), 319-327
- J. Shallit, A generalization of automatic sequences, Theoret. Comput. Sci. 61 (1988), 1-16 Zbl0662.68052MR974766
- J. Shallit, Automaticity IV : sequences, sets, and diversity, J. Théorie Nombres, Bordeaux 8 (1996), 347-367 Zbl0876.11010MR1438474
- J. Shallit, J. Stolfi, Two methods for generating fractals, Computers and Graphics 13 (1989), 185-191
- W. Sierpinski, Sur une courbe dont tout point est un point de ramification, C. R. Acad. Sci. 160 (1915), 302-305 Zbl45.0628.02
- W. Sierpinski, Sur une courbe cantorienne qui contient une image biunivoque et continue de toute courbe donnée, C. R. Acad. Sci. 162 (1916), 629-632 Zbl46.0295.02
- G. Siromoney, R. Siromoney, Rosenfeld’s cycle grammars and kolam, Graph grammars and their application to computer science 291 (1987), 564-579, Springer Zbl0657.68076MR943166
- G. Siromoney, R. Siromoney, K. Krithivasan, Array grammars and kolam, Computer Graphics and Image Processing 3 (1974), 63-82 Zbl0298.68054MR353725
- G. Siromoney, R. Siromoney, T. Robinsin, Kambi kolam and cycle grammars, A perspective in theoretical computer science-commemorative volume for Gift Siromoney 16 (1989), 267-300, World Scientific, Singapore
- R. Siromoney, K. G. Subramanian, Space-filling curves and infinite graphs, Graph-grammars and their application to computer science 153 (1983), 380-391, Springer, Haus Ohrbeck/Ger. 1982 Zbl0519.68068
- J. Tamura, Some problems having their origin in the power series , Reports of the meeting on analytic theory of numbers and related topics (1992), 190-212, Gakushuin University
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.