Non-abelian congruences between -values of elliptic curves
Daniel Delbourgo[1]; Tom Ward[2]
- [1] Monash University School of Mathematical Sciences Victoria 3800 (Australia)
- [2] University of Nottingham School of Mathematical Sciences Nottingham NG7 2RD (United Kingdom)
Annales de l’institut Fourier (2008)
- Volume: 58, Issue: 3, page 1023-1055
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topDelbourgo, Daniel, and Ward, Tom. "Non-abelian congruences between $L$-values of elliptic curves." Annales de l’institut Fourier 58.3 (2008): 1023-1055. <http://eudml.org/doc/10331>.
@article{Delbourgo2008,
abstract = {Let $E$ be a semistable elliptic curve over $\mathbb\{Q\}$. We prove weak forms of Kato’s $K_1$-congruences for the special values $ L\bigl (1, E/\mathbb\{Q\}( \mu _\{p^n\},\@root p^n \of \{\Delta \} )\bigr ) . $ More precisely, we show that they are true modulo $p^\{n+1\}$, rather than modulo $p^\{2n\}$. Whilst not quite enough to establish that there is a non-abelian $L$-function living in $K_1\bigl ( \mathbb\{Z\}_p[[ \rm \{Gal\} ( \mathbb\{Q\}( \mu _\{p^\infty \},\!\!\@root p^\infty \of \{\Delta \} )/\mathbb\{Q\}) ]] \bigr )$, they do provide strong evidence towards the existence of such an analytic object. For example, if $n=1$ these verify the numerical congruences found by Tim and Vladimir Dokchitser.},
affiliation = {Monash University School of Mathematical Sciences Victoria 3800 (Australia); University of Nottingham School of Mathematical Sciences Nottingham NG7 2RD (United Kingdom)},
author = {Delbourgo, Daniel, Ward, Tom},
journal = {Annales de l’institut Fourier},
keywords = {Iwasawa theory; modular forms; $p$-adic $L$-functions; -values; -adic -function; congruences},
language = {eng},
number = {3},
pages = {1023-1055},
publisher = {Association des Annales de l’institut Fourier},
title = {Non-abelian congruences between $L$-values of elliptic curves},
url = {http://eudml.org/doc/10331},
volume = {58},
year = {2008},
}
TY - JOUR
AU - Delbourgo, Daniel
AU - Ward, Tom
TI - Non-abelian congruences between $L$-values of elliptic curves
JO - Annales de l’institut Fourier
PY - 2008
PB - Association des Annales de l’institut Fourier
VL - 58
IS - 3
SP - 1023
EP - 1055
AB - Let $E$ be a semistable elliptic curve over $\mathbb{Q}$. We prove weak forms of Kato’s $K_1$-congruences for the special values $ L\bigl (1, E/\mathbb{Q}( \mu _{p^n},\@root p^n \of {\Delta } )\bigr ) . $ More precisely, we show that they are true modulo $p^{n+1}$, rather than modulo $p^{2n}$. Whilst not quite enough to establish that there is a non-abelian $L$-function living in $K_1\bigl ( \mathbb{Z}_p[[ \rm {Gal} ( \mathbb{Q}( \mu _{p^\infty },\!\!\@root p^\infty \of {\Delta } )/\mathbb{Q}) ]] \bigr )$, they do provide strong evidence towards the existence of such an analytic object. For example, if $n=1$ these verify the numerical congruences found by Tim and Vladimir Dokchitser.
LA - eng
KW - Iwasawa theory; modular forms; $p$-adic $L$-functions; -values; -adic -function; congruences
UR - http://eudml.org/doc/10331
ER -
References
top- Thanasis Bouganis, -functions of elliptic curves and false Tate curve extensions, (2005) Zbl1210.11115
- Thanasis Bouganis, Vladimir Dokchitser, Algebraicity of -values for elliptic curves in a false Tate curve tower, Math. Proc. Cambridge Philos. Soc. 142 (2007), 193-204 Zbl1214.11080MR2314594
- John Coates, Takako Fukaya, Kazuya Kato, Ramdorai Sujatha, Otmar Venjakob, The main conjecture for elliptic curves without complex multiplication, Publ. Math. Inst. Hautes Études Sci. (2005), 163-208 Zbl1108.11081MR2217048
- Koji Doi, Haruzo Hida, Hidenori Ishii, Discriminant of Hecke fields and twisted adjoint -values for , Invent. Math. 134 (1998), 547-577 Zbl0924.11035MR1660929
- T. Dokchitser, V. Dokchitser, Computations in non-commutative Iwasawa theory, Proc. Lond. Math. Soc. (3) 94 (2007), 211-272 Zbl1206.11083MR2294995
- Vladimir Dokchitser, Root numbers of non-abelian twists of elliptic curves, Proc. London Math. Soc. (3) 91 (2005), 300-324 Zbl1076.11042MR2167089
- Volker Dünger, -adic interpolation of convolutions of Hilbert modular forms, Ann. Inst. Fourier (Grenoble) 47 (1997), 365-428 Zbl0882.11025MR1450421
- Shai Haran, -adic -functions for modular forms, Compositio Math. 62 (1987), 31-46 Zbl0618.10027MR892149
- Kazuya Kato, of some non-commutative completed group rings, -Theory 34 (2005), 99-140 Zbl1080.19002MR2180109
- Alexey A. Panchishkin, Non-Archimedean -functions of Siegel and Hilbert modular forms, 1471 (1991), Springer-Verlag, Berlin Zbl0732.11026MR1122593
- Jean-Pierre Serre, Sur les représentations modulaires de degré de , Duke Math. J. 54 (1987), 179-230 Zbl0641.10026MR885783
- Goro Shimura, Corrections to: “The special values of the zeta functions associated with Hilbert modular forms” [Duke Math. J. 45 (1978), no. 3, 637–679, Duke Math. J. 48 (1981) Zbl0394.10015
- Glenn Stevens, Stickelberger elements and modular parametrizations of elliptic curves, Invent. Math. 98 (1989), 75-106 Zbl0697.14023MR1010156
- J. Tate, Number theoretic background, Automorphic forms, representations and -functions (Proc. Sympos. Pure Math., Oregon State Univ., Corvallis, Ore., 1977), Part 2 (1979), 3-26, Amer. Math. Soc., Providence, R.I. Zbl0422.12007MR546607
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.