Non-abelian congruences between L -values of elliptic curves

Daniel Delbourgo[1]; Tom Ward[2]

  • [1] Monash University School of Mathematical Sciences Victoria 3800 (Australia)
  • [2] University of Nottingham School of Mathematical Sciences Nottingham NG7 2RD (United Kingdom)

Annales de l’institut Fourier (2008)

  • Volume: 58, Issue: 3, page 1023-1055
  • ISSN: 0373-0956

Abstract

top
Let E be a semistable elliptic curve over . We prove weak forms of Kato’s K 1 -congruences for the special values L 1 , E / ( μ p n , Δ p n ) . More precisely, we show that they are true modulo p n + 1 , rather than modulo p 2 n . Whilst not quite enough to establish that there is a non-abelian L -function living in K 1 p [ [ Gal ( ( μ p , Δ p ) / ) ] ] , they do provide strong evidence towards the existence of such an analytic object. For example, if n = 1 these verify the numerical congruences found by Tim and Vladimir Dokchitser.

How to cite

top

Delbourgo, Daniel, and Ward, Tom. "Non-abelian congruences between $L$-values of elliptic curves." Annales de l’institut Fourier 58.3 (2008): 1023-1055. <http://eudml.org/doc/10331>.

@article{Delbourgo2008,
abstract = {Let $E$ be a semistable elliptic curve over $\mathbb\{Q\}$. We prove weak forms of Kato’s $K_1$-congruences for the special values $ L\bigl (1, E/\mathbb\{Q\}( \mu _\{p^n\},\@root p^n \of \{\Delta \} )\bigr ) . $ More precisely, we show that they are true modulo $p^\{n+1\}$, rather than modulo $p^\{2n\}$. Whilst not quite enough to establish that there is a non-abelian $L$-function living in $K_1\bigl ( \mathbb\{Z\}_p[[ \rm \{Gal\} ( \mathbb\{Q\}( \mu _\{p^\infty \},\!\!\@root p^\infty \of \{\Delta \} )/\mathbb\{Q\}) ]] \bigr )$, they do provide strong evidence towards the existence of such an analytic object. For example, if $n=1$ these verify the numerical congruences found by Tim and Vladimir Dokchitser.},
affiliation = {Monash University School of Mathematical Sciences Victoria 3800 (Australia); University of Nottingham School of Mathematical Sciences Nottingham NG7 2RD (United Kingdom)},
author = {Delbourgo, Daniel, Ward, Tom},
journal = {Annales de l’institut Fourier},
keywords = {Iwasawa theory; modular forms; $p$-adic $L$-functions; -values; -adic -function; congruences},
language = {eng},
number = {3},
pages = {1023-1055},
publisher = {Association des Annales de l’institut Fourier},
title = {Non-abelian congruences between $L$-values of elliptic curves},
url = {http://eudml.org/doc/10331},
volume = {58},
year = {2008},
}

TY - JOUR
AU - Delbourgo, Daniel
AU - Ward, Tom
TI - Non-abelian congruences between $L$-values of elliptic curves
JO - Annales de l’institut Fourier
PY - 2008
PB - Association des Annales de l’institut Fourier
VL - 58
IS - 3
SP - 1023
EP - 1055
AB - Let $E$ be a semistable elliptic curve over $\mathbb{Q}$. We prove weak forms of Kato’s $K_1$-congruences for the special values $ L\bigl (1, E/\mathbb{Q}( \mu _{p^n},\@root p^n \of {\Delta } )\bigr ) . $ More precisely, we show that they are true modulo $p^{n+1}$, rather than modulo $p^{2n}$. Whilst not quite enough to establish that there is a non-abelian $L$-function living in $K_1\bigl ( \mathbb{Z}_p[[ \rm {Gal} ( \mathbb{Q}( \mu _{p^\infty },\!\!\@root p^\infty \of {\Delta } )/\mathbb{Q}) ]] \bigr )$, they do provide strong evidence towards the existence of such an analytic object. For example, if $n=1$ these verify the numerical congruences found by Tim and Vladimir Dokchitser.
LA - eng
KW - Iwasawa theory; modular forms; $p$-adic $L$-functions; -values; -adic -function; congruences
UR - http://eudml.org/doc/10331
ER -

References

top
  1. Thanasis Bouganis, L -functions of elliptic curves and false Tate curve extensions, (2005) Zbl1210.11115
  2. Thanasis Bouganis, Vladimir Dokchitser, Algebraicity of L -values for elliptic curves in a false Tate curve tower, Math. Proc. Cambridge Philos. Soc. 142 (2007), 193-204 Zbl1214.11080MR2314594
  3. John Coates, Takako Fukaya, Kazuya Kato, Ramdorai Sujatha, Otmar Venjakob, The GL 2 main conjecture for elliptic curves without complex multiplication, Publ. Math. Inst. Hautes Études Sci. (2005), 163-208 Zbl1108.11081MR2217048
  4. Koji Doi, Haruzo Hida, Hidenori Ishii, Discriminant of Hecke fields and twisted adjoint L -values for GL ( 2 ) , Invent. Math. 134 (1998), 547-577 Zbl0924.11035MR1660929
  5. T. Dokchitser, V. Dokchitser, Computations in non-commutative Iwasawa theory, Proc. Lond. Math. Soc. (3) 94 (2007), 211-272 Zbl1206.11083MR2294995
  6. Vladimir Dokchitser, Root numbers of non-abelian twists of elliptic curves, Proc. London Math. Soc. (3) 91 (2005), 300-324 Zbl1076.11042MR2167089
  7. Volker Dünger, p -adic interpolation of convolutions of Hilbert modular forms, Ann. Inst. Fourier (Grenoble) 47 (1997), 365-428 Zbl0882.11025MR1450421
  8. Shai Haran, p -adic L -functions for modular forms, Compositio Math. 62 (1987), 31-46 Zbl0618.10027MR892149
  9. Kazuya Kato, K 1 of some non-commutative completed group rings, -Theory 34 (2005), 99-140 Zbl1080.19002MR2180109
  10. Alexey A. Panchishkin, Non-Archimedean L -functions of Siegel and Hilbert modular forms, 1471 (1991), Springer-Verlag, Berlin Zbl0732.11026MR1122593
  11. Jean-Pierre Serre, Sur les représentations modulaires de degré 2 de Gal ( Q ¯ / Q ) , Duke Math. J. 54 (1987), 179-230 Zbl0641.10026MR885783
  12. Goro Shimura, Corrections to: “The special values of the zeta functions associated with Hilbert modular forms” [Duke Math. J. 45 (1978), no. 3, 637–679, Duke Math. J. 48 (1981) Zbl0394.10015
  13. Glenn Stevens, Stickelberger elements and modular parametrizations of elliptic curves, Invent. Math. 98 (1989), 75-106 Zbl0697.14023MR1010156
  14. J. Tate, Number theoretic background, Automorphic forms, representations and -functions (Proc. Sympos. Pure Math., Oregon State Univ., Corvallis, Ore., 1977), Part 2 (1979), 3-26, Amer. Math. Soc., Providence, R.I. Zbl0422.12007MR546607

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.