Some groups whose reduced C * -algebra is simple

M. Bekka; M. Cowling; P. de La Harpe

Publications Mathématiques de l'IHÉS (1994)

  • Volume: 80, page 117-134
  • ISSN: 0073-8301

How to cite

top

Bekka, M., Cowling, M., and La Harpe, P. de. "Some groups whose reduced $C^*$-algebra is simple." Publications Mathématiques de l'IHÉS 80 (1994): 117-134. <http://eudml.org/doc/104098>.

@article{Bekka1994,
author = {Bekka, M., Cowling, M., La Harpe, P. de},
journal = {Publications Mathématiques de l'IHÉS},
keywords = {locally compact groups; reduced -algebra; discrete group; connected real semisimple Lie group; lattice; Zariski dense subgroup; Borel's density theorem; connected semisimple algebraic group; group of -rational points; reduced crossed product -algebras; simplicity},
language = {eng},
pages = {117-134},
publisher = {Institut des Hautes Études Scientifiques},
title = {Some groups whose reduced $C^*$-algebra is simple},
url = {http://eudml.org/doc/104098},
volume = {80},
year = {1994},
}

TY - JOUR
AU - Bekka, M.
AU - Cowling, M.
AU - La Harpe, P. de
TI - Some groups whose reduced $C^*$-algebra is simple
JO - Publications Mathématiques de l'IHÉS
PY - 1994
PB - Institut des Hautes Études Scientifiques
VL - 80
SP - 117
EP - 134
LA - eng
KW - locally compact groups; reduced -algebra; discrete group; connected real semisimple Lie group; lattice; Zariski dense subgroup; Borel's density theorem; connected semisimple algebraic group; group of -rational points; reduced crossed product -algebras; simplicity
UR - http://eudml.org/doc/104098
ER -

References

top
  1. [Ake] C. A. AKEMANN, Operator algebras associated with Fuchsian groups, Houston J. Math., 7 (1981), 295-301. Zbl0484.22011MR83a:22004
  2. [AkO] C. A. AKEMANN and P. A. OSTRAND, Computing norms in group C*-algebras, Amer. J. Math., 98 (1976), 1015-1047. Zbl0342.22008MR56 #1079
  3. [BCH] M. BEKKA, M. COWLING and P. DE LA HARPE, Simplicity of the reduced C*-algebra of PSL(n,Z), Inter. Math. Res. Not., 7 (1994), 285-291. Zbl0827.22002MR95h:22005
  4. [BeL] Y. BENOIST and F. LABOURIE, Sur les difféomorphismes d'Anosov affines à feuilletages stable et instable différentiables, Invent. Math., 111 (1993), 285-308. Zbl0777.58029MR94d:58114
  5. [BGS] W. BALLMANN, M. GROMOV and V. SCHROEDER, Manifolds of Nonpositive Curvature, Birkhäuser, 1985. Zbl0591.53001MR87h:53050
  6. [CMSZ1] D. I. CARTWRIGHT, A. M. MANTERO, T. STEGER and A. ZAPPA, Groups acting simply transitively on the vertices of a building of type Ã2, I, Geom. Ded., 47 (1993), 143-166. Zbl0784.51010MR95b:20053
  7. [CMSZ2] D. I. CARTWRIGHT, A. M. MANTERO, T. STEGER and A. ZAPPA, Groups acting simply transitively on the vertices of a building of type Ã2, II, Geom. Ded., 47 (1993), 167-223. Zbl0784.51011MR95b:20054
  8. [Dix] J. DIXMIER, Les C*-algèbres et leurs représentations, Gauthiers-Villars, 1969. Zbl0174.18601MR39 #7442
  9. [EbO] P. EBERLEIN and B. O'NEILL, Visibility manifolds, Pacific J. Math., 46 (1973), 45-110. Zbl0264.53026MR49 #1421
  10. [GoM] I. A. GOL'DSHEID and G. A. MARGULIS, A condition for simplicity of the spectrum of Lyapunov exponents, Soviet Math. Dokl., 35 (1987), 309-313. Zbl0638.15010MR89c:60073
  11. [GuR] Y. GUIVARC'H and A. RAUGI, Propriétés de contraction d'un semi-groupe de matrices inversibles, Israel J. Math., 65 (1989), 165-196. Zbl0677.60007MR91b:22006
  12. [Ha1] P. DE LA HARPE, Reduced C*-algebras of discrete groups which are simple with unique trace, Springer Lecture Notes in Math., 1132 (1985), 230-253. Zbl0575.46049MR87b:22007
  13. [Ha2] P. DE LA HARPE, Free subgroups in linear groups, L'Enseignement Math., 29 (1983), 129-144. Zbl0517.20024MR84i:20050
  14. [Ha3] P. DE LA HARPE, Groupes hyperboliques, algèbres d'opérateurs, et un théorème de Jolissaint, C. R. Acad. Sci. Paris, 307, Série I (1988), 771-774. Zbl0653.46059MR90d:22005
  15. [HaP] U. HAAGERUP and G. PISIER, Bounded linear operators between C*-algebras, Duke Math. J., 71 (1993), 889-925. Zbl0803.46064MR94k:46112
  16. [HaS] P. DE LA HARPE and G. SKANDALIS, Powers' property and simple C*-algebras, Math. Ann., 273 (1986), 241-250. Zbl0563.46033MR87f:46124
  17. [HoR] R. E. HOWE and J. ROSENBERG, The unitary representation theory of GL(n) of an infinite discrete field, Israel J. Math., 67 (1989), 67-81. Zbl0707.22002MR90m:22018
  18. [Kir] A. A. KIRILLOV, Positive definite functions on a group of matrices with elements from a discrete field, Soviet Math. Dokl., 6 (1965), 707-709. Zbl0133.37505MR33 #1404
  19. [Lei] M. LEINERT, Faltungsoperatoren auf gewissen diskreten Gruppen, Studia Math., 52 (1974), 149-158. Zbl0262.43009MR50 #7954
  20. [Mos] G. D. MOSTOW, Strong Rigidity of Locally Symmetric Spaces, Princeton University Press, 1973. Zbl0265.53039MR52 #5874
  21. [PaS] W. PASCHKE and N. SALINAS, C*-algebras associated with the free products of groups, Pacific J. Math., 82 (1979), 211-221. Zbl0413.46049MR82c:22010
  22. [Pow] R. T. POWERS, Simplicity of the C*-algebra associated with the free group on two generators, Duke Math. J., 42 (1975), 151-156. Zbl0342.46046MR51 #10534
  23. [Ros] J. ROSENBERG, Un complément à un théorème de Kirillov sur les caractères de GL(n) d'un corps infini discret, C. R. Acad. Sci. Paris, 309, Série I (1989), 581-586. Zbl0902.22004MR91h:22010
  24. [Tit] J. TITS, Free subgroups in linear groups, J. Algebra, 20 (1972), 250-270. Zbl0236.20032MR44 #4105
  25. [Wal] N. WALLACH, Harmonic Analysis on Homogeneous Spaces, Marcel Dekker, 1973. Zbl0265.22022MR58 #16978
  26. [War] G. WARNER, Harmonic Analysis on Semisimple Lie Groups I, Springer-Verlag, 1972. Zbl0265.22020
  27. [Zim] R. J. ZIMMER, Ergodic Theory and Semisimple Groups, Birkhäuser, 1984. Zbl0571.58015MR86j:22014

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.