Non-uniformly expanding dynamics in maps with singularities and criticalities
Stephano Luzzatto; Warwick Tucker
Publications Mathématiques de l'IHÉS (1999)
- Volume: 89, page 179-226
- ISSN: 0073-8301
Access Full Article
topHow to cite
topLuzzatto, Stephano, and Tucker, Warwick. "Non-uniformly expanding dynamics in maps with singularities and criticalities." Publications Mathématiques de l'IHÉS 89 (1999): 179-226. <http://eudml.org/doc/104158>.
@article{Luzzatto1999,
author = {Luzzatto, Stephano, Tucker, Warwick},
journal = {Publications Mathématiques de l'IHÉS},
keywords = {Lyapunov exponent; Lorenz system; return map; bounded recurrence; binding period; interval maps},
language = {eng},
pages = {179-226},
publisher = {Institut des Hautes Études Scientifiques},
title = {Non-uniformly expanding dynamics in maps with singularities and criticalities},
url = {http://eudml.org/doc/104158},
volume = {89},
year = {1999},
}
TY - JOUR
AU - Luzzatto, Stephano
AU - Tucker, Warwick
TI - Non-uniformly expanding dynamics in maps with singularities and criticalities
JO - Publications Mathématiques de l'IHÉS
PY - 1999
PB - Institut des Hautes Études Scientifiques
VL - 89
SP - 179
EP - 226
LA - eng
KW - Lyapunov exponent; Lorenz system; return map; bounded recurrence; binding period; interval maps
UR - http://eudml.org/doc/104158
ER -
References
top- [ABS77] V. S. AFRAIMOVICH, V. V. BYKOV and L. P. SHIL'NIKOV, On the appearance and structure of the Lorenz attractor, Dokl. Acad. Sci. USSR 234 (1977), 336-339. Zbl0451.76052
- [BC85] M. BENEDICKS and L. CARLESON, On iterations of 1 - ax2 on (- 1, 1), Ann. of Math. 122 (1985), 1-25. Zbl0597.58016MR87c:58058
- [BC91] M. BENEDICKS and L. CARLESON, The dynamics of the Hénon map, Ann. of Math. 133 (1991), 73-169. Zbl0724.58042MR92d:58116
- [Cos98] M. J. COSTA, Global strange attractors after collision of horseshoes with periodic sinks, PhD thesis, IMPA (1998).
- [dMvS93] W. de MELO and S. VAN STRIEN, One-dimensional dynamics, Springer Verlag, Berlin, 1993. Zbl0791.58003MR95a:58035
- [GW79] J. GUCKENHEIMER and R. F. WILLIAMS, Structural stability of Lorenz attractors, Publ. Math. IHES 50 (1979), 59-72. Zbl0436.58018MR82b:58055a
- [Hén76] M. HÉNON, A two-dimensional mapping with a strange attractor, Comm. Math. Phys. 50 (1976), 69-77. Zbl0576.58018MR54 #10917
- [HL] M. HOLLAND and S. LUZZATTO, Hyperbolicity and statistical properties of two-dimensional maps with criticalities and singularities, work in progress.
- [HP76] M. HÉNON and Y. POMEAU, Two strange attractors with a simple structure, Lect. Notes in Math. 565 (1976), 29-68. Zbl0379.76049MR56 #6742
- [Jak81] M. JAKOBSON, Absolutely continuous invariant measures for one-parameter families of one-dimensional maps, Comm. Math. Phys. 81 (1981), 39-88. Zbl0497.58017MR83j:58070
- [Lor63] E. N. LORENZ, Deterministic nonperiodic flow, J. Atmosph. Sci. 20 (1963), 130-141.
- [Luz00] S. LUZZATTO, Bounded recurrence of critical points and Jakobson's theorem, London Mathematical Society Lecture Notes 274 (2000). Zbl1062.37027MR2001i:37056
- [LV] S. LUZZATTO and M. VIANA, Lorenz-like attractors without continuous invariant foliations, in preparation.
- [LV00] S. LUZZATTO and M. VIANA, Positive Lyapunov exponents for Lorenz-like maps with criticalities, Asterisque, 261 (2000), 201-237. Zbl0944.37025MR2001f:37036
- [MV93] L. MORA and M. VIANA, Abundance of strange attractors, Acta Math. 171 (1993), 1-71. Zbl0815.58016MR94k:58089
- [PRV] M. J. PACIFICO, A. ROVELLA, and M. VIANA, Persistence of global spiraling attractors, in preparation.
- [PRV98] M. J. PACIFICO, A. ROVELLA, and M. VIANA, Infinite-modal maps with global chaotic behaviour, Ann. of Math. 148 (1998), 1-44. Zbl0916.58029MR99k:58060
- [Ree86] M. REES, Positive measure sets of ergodic rational maps, Ann. Sci. École Norm. Sup., 4e Série 19 (1986), 383-407. Zbl0611.58038MR88g:58100
- [Rov93] A. ROVELLA, The dynamics of perturbations of the contracting Lorenz attractor, Bull. Braz. Math. Soc. 24 (1993), 233-259. Zbl0797.58051MR95a:58097
- [Ryc88] M. RYCHLIK, Another proof of Jakobson's theorem and related results, Erg. Th. & Dyn. Syst. 8 (1988), 93-109. Zbl0671.58019MR90b:58149
- [Spa82] C. SPARROW, The Lorenz equations : bifurcations, chaos and strange attractors, volume 41 of Applied Mathematical Sciences, Springer Verlag, Berlin, 1982. Zbl0504.58001MR84b:58072
- [Thu98] H. THUNBERG, Positive Lyapunov exponents for maps with flat critical points, Erg. Th. & Dyn. Syst. 19 (1998), 767-807. Zbl0966.37011MR2000m:37051
- [Tsu93a] M. TSUJII, Positive Lyapunov exponents in families of one-dimensional dynamical systems, Inventiones Mathematicae 111 (1993), 113-137. Zbl0787.58029MR93j:58081
- [Tsu93b] M. TSUJII, A proof of Benedicks-Carleson-Jakobson Theorem, Tokyo J. Math. 16 (1993), 295-310. Zbl0801.58027MR94j:58104
- [Tuc99] W. TUCKER, The Lorenz attractor exists, C. R. Acad. Sci. Paris t. 328, Série I (1999), 1197-1202. Zbl0935.34050MR2001b:37051
- [Yoc] J.-C. YOCCOZ, Weakly Hyperbolic Dynamics, Birkhauser, in preparation.
- [You98] L.-S. YOUNG, Statistical properties of dynamical systems with some hyperbolicity, Ann. of Math. 147 (1998) 585-650. Zbl0945.37009MR99h:58140
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.