Tempered solutions of 𝒟 -modules on complex curves and formal invariants

Giovanni Morando[1]

  • [1] Università di Padova Dipartimento di Matematica Pura ed Applicata Via Trieste 63 35121 Padova (Italy) and Universidade de Lisboa Centro de Álgebra Av. Prof. Gama Pinto, 2 1649-003 Lisboa (Portugal)

Annales de l’institut Fourier (2009)

  • Volume: 59, Issue: 4, page 1611-1639
  • ISSN: 0373-0956

Abstract

top
Let X be a complex analytic curve. In this paper we prove that the subanalytic sheaf of tempered holomorphic solutions of 𝒟 -modules on X induces a fully faithful functor on a subcategory of germs of formal holonomic 𝒟 -modules. Further, given a germ of holonomic 𝒟 -module, we obtain some results linking the subanalytic sheaf of tempered solutions of and the classical formal and analytic invariants of .

How to cite

top

Morando, Giovanni. "Tempered solutions of $\mathcal{D}$-modules on complex curves and formal invariants." Annales de l’institut Fourier 59.4 (2009): 1611-1639. <http://eudml.org/doc/10436>.

@article{Morando2009,
abstract = {Let $X$ be a complex analytic curve. In this paper we prove that the subanalytic sheaf of tempered holomorphic solutions of $\mathcal\{D\}$-modules on $X$ induces a fully faithful functor on a subcategory of germs of formal holonomic $\mathcal\{D\}$-modules. Further, given a germ $\mathcal\{M\}$ of holonomic $\mathcal\{D\}$-module, we obtain some results linking the subanalytic sheaf of tempered solutions of $\mathcal\{M\}$ and the classical formal and analytic invariants of $\mathcal\{M\}$.},
affiliation = {Università di Padova Dipartimento di Matematica Pura ed Applicata Via Trieste 63 35121 Padova (Italy) and Universidade de Lisboa Centro de Álgebra Av. Prof. Gama Pinto, 2 1649-003 Lisboa (Portugal)},
author = {Morando, Giovanni},
journal = {Annales de l’institut Fourier},
keywords = {$\mathcal\{D\}$-modules; irregular singularities; tempered holomorphic functions; subanalytic; -modules},
language = {eng},
number = {4},
pages = {1611-1639},
publisher = {Association des Annales de l’institut Fourier},
title = {Tempered solutions of $\mathcal\{D\}$-modules on complex curves and formal invariants},
url = {http://eudml.org/doc/10436},
volume = {59},
year = {2009},
}

TY - JOUR
AU - Morando, Giovanni
TI - Tempered solutions of $\mathcal{D}$-modules on complex curves and formal invariants
JO - Annales de l’institut Fourier
PY - 2009
PB - Association des Annales de l’institut Fourier
VL - 59
IS - 4
SP - 1611
EP - 1639
AB - Let $X$ be a complex analytic curve. In this paper we prove that the subanalytic sheaf of tempered holomorphic solutions of $\mathcal{D}$-modules on $X$ induces a fully faithful functor on a subcategory of germs of formal holonomic $\mathcal{D}$-modules. Further, given a germ $\mathcal{M}$ of holonomic $\mathcal{D}$-module, we obtain some results linking the subanalytic sheaf of tempered solutions of $\mathcal{M}$ and the classical formal and analytic invariants of $\mathcal{M}$.
LA - eng
KW - $\mathcal{D}$-modules; irregular singularities; tempered holomorphic functions; subanalytic; -modules
UR - http://eudml.org/doc/10436
ER -

References

top
  1. D. G. Babbitt, V. S. Varadarajan, Local moduli for meromorphic differential equations, Astérisque (1989) Zbl0683.34003MR1014083
  2. Edward Bierstone, Pierre D. Milman, Semianalytic and subanalytic sets, Inst. Hautes Études Sci. Publ. Math. (1988), 5-42 Zbl0674.32002MR972342
  3. Jacek Bochnak, Michel Coste, Marie-Françoise Roy, Real algebraic geometry, 36 (1998), Springer-Verlag, Berlin Zbl0912.14023MR1659509
  4. Alain Chenciner, Courbes algébriques planes, 4 (1978), Université de Paris VII U.E.R. de Mathématiques, Paris Zbl0557.14016
  5. Michel Coste, An introduction to o-minimal geometry, (2000), Istituti Ed. e Poligrafici Intern., Università di Pisa, Dipartimento di Matematica, Pisa 
  6. Pierre Deligne, Bernard Malgrange, Jean-Pierre Ramis, Singularités irrégulières, (2007), Société Mathématique de France, Paris Zbl1130.14001MR2387754
  7. M. Kashiwara, Faisceaux constructibles et systèmes holonômes d’équations aux dérivées partielles linéaires à points singuliers réguliers, Séminaire Goulaouic-Schwartz, 1979–1980 (French) (1980), École Polytechnique, Palaiseau Zbl0444.58014MR600704
  8. Masaki Kashiwara, The Riemann-Hilbert problem for holonomic systems, Publ. Res. Inst. Math. Sci. 20 (1984), 319-365 Zbl0566.32023MR743382
  9. Masaki Kashiwara, D -modules and microlocal calculus, 217 (2003), American Mathematical Society, Providence, RI Zbl1017.32012MR1943036
  10. Masaki Kashiwara, Pierre Schapira, Ind-sheaves, Astérisque (2001) Zbl0993.32009MR1827714
  11. Masaki Kashiwara, Pierre Schapira, Microlocal study of ind-sheaves. I. Micro-support and regularity, Astérisque (2003), 143-164 Zbl1053.35009MR2003419
  12. M. Loday-Richaud, G. Pourcin, On index theorems for linear ordinary differential operators, Ann. Inst. Fourier (Grenoble) 47 (1997), 1379-1424 Zbl0901.34012MR1600379
  13. S. Łojasiewicz, Sur le problème de la division, Studia Math. 18 (1959), 87-136 Zbl0115.10203MR107168
  14. B. Malgrange, Équations différentielles à coefficients polynomiaux, 96 (1991), Birkhäuser Boston Inc., Boston, MA Zbl0764.32001MR1117227
  15. T. Mochizuki, Good formal structure for meromorphic flat connections on smooth projective surfaces Zbl1183.14027
  16. T. Mochizuki, Wild harmonic bundles and wild pure twistor D-modules Zbl1245.32001
  17. Giovanni Morando, An existence theorem for tempered solutions of 𝒟 -modules on complex curves, Publ. Res. Inst. Math. Sci. 43 (2007), 625-659 Zbl1155.32018MR2361790
  18. Luca Prelli, Microlocalization of subanalytic sheaves, C. R. Math. Acad. Sci. Paris 345 (2007), 127-132 Zbl1159.14034MR2344810
  19. Claude Sabbah, Équations différentielles à points singuliers irréguliers en dimension 2 , Ann. Inst. Fourier (Grenoble) 43 (1993), 1619-1688 Zbl0803.32005MR1275212
  20. Claude Sabbah, Équations différentielles à points singuliers irréguliers et phénomène de Stokes en dimension 2, Astérisque (2000) Zbl0947.32005MR1741802
  21. Claude Sabbah, Déformations isomonodromiques et variétés de Frobenius, (2002), EDP Sciences, Les Ulis Zbl1101.14001MR1933784
  22. Wolfgang Wasow, Asymptotic expansions for ordinary differential equations, (1987), Dover Publications Inc., New York Zbl0644.34003MR919406

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.