Tempered solutions of -modules on complex curves and formal invariants
- [1] Università di Padova Dipartimento di Matematica Pura ed Applicata Via Trieste 63 35121 Padova (Italy) and Universidade de Lisboa Centro de Álgebra Av. Prof. Gama Pinto, 2 1649-003 Lisboa (Portugal)
Annales de l’institut Fourier (2009)
- Volume: 59, Issue: 4, page 1611-1639
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topMorando, Giovanni. "Tempered solutions of $\mathcal{D}$-modules on complex curves and formal invariants." Annales de l’institut Fourier 59.4 (2009): 1611-1639. <http://eudml.org/doc/10436>.
@article{Morando2009,
abstract = {Let $X$ be a complex analytic curve. In this paper we prove that the subanalytic sheaf of tempered holomorphic solutions of $\mathcal\{D\}$-modules on $X$ induces a fully faithful functor on a subcategory of germs of formal holonomic $\mathcal\{D\}$-modules. Further, given a germ $\mathcal\{M\}$ of holonomic $\mathcal\{D\}$-module, we obtain some results linking the subanalytic sheaf of tempered solutions of $\mathcal\{M\}$ and the classical formal and analytic invariants of $\mathcal\{M\}$.},
affiliation = {Università di Padova Dipartimento di Matematica Pura ed Applicata Via Trieste 63 35121 Padova (Italy) and Universidade de Lisboa Centro de Álgebra Av. Prof. Gama Pinto, 2 1649-003 Lisboa (Portugal)},
author = {Morando, Giovanni},
journal = {Annales de l’institut Fourier},
keywords = {$\mathcal\{D\}$-modules; irregular singularities; tempered holomorphic functions; subanalytic; -modules},
language = {eng},
number = {4},
pages = {1611-1639},
publisher = {Association des Annales de l’institut Fourier},
title = {Tempered solutions of $\mathcal\{D\}$-modules on complex curves and formal invariants},
url = {http://eudml.org/doc/10436},
volume = {59},
year = {2009},
}
TY - JOUR
AU - Morando, Giovanni
TI - Tempered solutions of $\mathcal{D}$-modules on complex curves and formal invariants
JO - Annales de l’institut Fourier
PY - 2009
PB - Association des Annales de l’institut Fourier
VL - 59
IS - 4
SP - 1611
EP - 1639
AB - Let $X$ be a complex analytic curve. In this paper we prove that the subanalytic sheaf of tempered holomorphic solutions of $\mathcal{D}$-modules on $X$ induces a fully faithful functor on a subcategory of germs of formal holonomic $\mathcal{D}$-modules. Further, given a germ $\mathcal{M}$ of holonomic $\mathcal{D}$-module, we obtain some results linking the subanalytic sheaf of tempered solutions of $\mathcal{M}$ and the classical formal and analytic invariants of $\mathcal{M}$.
LA - eng
KW - $\mathcal{D}$-modules; irregular singularities; tempered holomorphic functions; subanalytic; -modules
UR - http://eudml.org/doc/10436
ER -
References
top- D. G. Babbitt, V. S. Varadarajan, Local moduli for meromorphic differential equations, Astérisque (1989) Zbl0683.34003MR1014083
- Edward Bierstone, Pierre D. Milman, Semianalytic and subanalytic sets, Inst. Hautes Études Sci. Publ. Math. (1988), 5-42 Zbl0674.32002MR972342
- Jacek Bochnak, Michel Coste, Marie-Françoise Roy, Real algebraic geometry, 36 (1998), Springer-Verlag, Berlin Zbl0912.14023MR1659509
- Alain Chenciner, Courbes algébriques planes, 4 (1978), Université de Paris VII U.E.R. de Mathématiques, Paris Zbl0557.14016
- Michel Coste, An introduction to o-minimal geometry, (2000), Istituti Ed. e Poligrafici Intern., Università di Pisa, Dipartimento di Matematica, Pisa
- Pierre Deligne, Bernard Malgrange, Jean-Pierre Ramis, Singularités irrégulières, (2007), Société Mathématique de France, Paris Zbl1130.14001MR2387754
- M. Kashiwara, Faisceaux constructibles et systèmes holonômes d’équations aux dérivées partielles linéaires à points singuliers réguliers, Séminaire Goulaouic-Schwartz, 1979–1980 (French) (1980), École Polytechnique, Palaiseau Zbl0444.58014MR600704
- Masaki Kashiwara, The Riemann-Hilbert problem for holonomic systems, Publ. Res. Inst. Math. Sci. 20 (1984), 319-365 Zbl0566.32023MR743382
- Masaki Kashiwara, -modules and microlocal calculus, 217 (2003), American Mathematical Society, Providence, RI Zbl1017.32012MR1943036
- Masaki Kashiwara, Pierre Schapira, Ind-sheaves, Astérisque (2001) Zbl0993.32009MR1827714
- Masaki Kashiwara, Pierre Schapira, Microlocal study of ind-sheaves. I. Micro-support and regularity, Astérisque (2003), 143-164 Zbl1053.35009MR2003419
- M. Loday-Richaud, G. Pourcin, On index theorems for linear ordinary differential operators, Ann. Inst. Fourier (Grenoble) 47 (1997), 1379-1424 Zbl0901.34012MR1600379
- S. Łojasiewicz, Sur le problème de la division, Studia Math. 18 (1959), 87-136 Zbl0115.10203MR107168
- B. Malgrange, Équations différentielles à coefficients polynomiaux, 96 (1991), Birkhäuser Boston Inc., Boston, MA Zbl0764.32001MR1117227
- T. Mochizuki, Good formal structure for meromorphic flat connections on smooth projective surfaces Zbl1183.14027
- T. Mochizuki, Wild harmonic bundles and wild pure twistor D-modules Zbl1245.32001
- Giovanni Morando, An existence theorem for tempered solutions of -modules on complex curves, Publ. Res. Inst. Math. Sci. 43 (2007), 625-659 Zbl1155.32018MR2361790
- Luca Prelli, Microlocalization of subanalytic sheaves, C. R. Math. Acad. Sci. Paris 345 (2007), 127-132 Zbl1159.14034MR2344810
- Claude Sabbah, Équations différentielles à points singuliers irréguliers en dimension , Ann. Inst. Fourier (Grenoble) 43 (1993), 1619-1688 Zbl0803.32005MR1275212
- Claude Sabbah, Équations différentielles à points singuliers irréguliers et phénomène de Stokes en dimension 2, Astérisque (2000) Zbl0947.32005MR1741802
- Claude Sabbah, Déformations isomonodromiques et variétés de Frobenius, (2002), EDP Sciences, Les Ulis Zbl1101.14001MR1933784
- Wolfgang Wasow, Asymptotic expansions for ordinary differential equations, (1987), Dover Publications Inc., New York Zbl0644.34003MR919406
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.