-boundedness of oscillating spectral multipliers on Riemannian manifolds
- [1] Department of Mathematics Aristotle University of Thessaloniki Thessaloniki, 54.124 Greece
Annales mathématiques Blaise Pascal (2003)
- Volume: 10, Issue: 1, page 133-160
- ISSN: 1259-1734
Access Full Article
topAbstract
topHow to cite
topMarias, Michel. "$L^{p}$-boundedness of oscillating spectral multipliers on Riemannian manifolds." Annales mathématiques Blaise Pascal 10.1 (2003): 133-160. <http://eudml.org/doc/10481>.
@article{Marias2003,
abstract = {We prove endpoint estimates for operators given by oscillating spectral multipliers on Riemannian manifolds with $C^\{\infty \}$-bounded geometry and nonnegative Ricci curvature.},
affiliation = {Department of Mathematics Aristotle University of Thessaloniki Thessaloniki, 54.124 Greece},
author = {Marias, Michel},
journal = {Annales mathématiques Blaise Pascal},
keywords = {spectral multipliers; wave equation; Riesz means; wave operators},
language = {eng},
month = {1},
number = {1},
pages = {133-160},
publisher = {Annales mathématiques Blaise Pascal},
title = {$L^\{p\}$-boundedness of oscillating spectral multipliers on Riemannian manifolds},
url = {http://eudml.org/doc/10481},
volume = {10},
year = {2003},
}
TY - JOUR
AU - Marias, Michel
TI - $L^{p}$-boundedness of oscillating spectral multipliers on Riemannian manifolds
JO - Annales mathématiques Blaise Pascal
DA - 2003/1//
PB - Annales mathématiques Blaise Pascal
VL - 10
IS - 1
SP - 133
EP - 160
AB - We prove endpoint estimates for operators given by oscillating spectral multipliers on Riemannian manifolds with $C^{\infty }$-bounded geometry and nonnegative Ricci curvature.
LA - eng
KW - spectral multipliers; wave equation; Riesz means; wave operators
UR - http://eudml.org/doc/10481
ER -
References
top- G. Alexopoulos, Oscillating multipliers on Lie groups and Riemannian manifolds, Tohoku Math. J. (2) 46 (1994), 457-468 Zbl0835.22008MR1301284
- G. Alexopoulos, N. Lohoué, Riesz means on Lie groups and Riemannian manifolds of nonnegative curvature, Bull. Soc. Math. France 122 (1994), 209-223 Zbl0832.22014MR1273901
- P. Bérard, On the wave equation on a compact Riemannian manifold without conjugate points, Math. Z. 155 (1977), 249-276 Zbl0341.35052MR455055
- P. Bérard, Riesz means of Riemannian manifolds, Geometry of the Laplace operator (1980), 1-12, Amer. Math. Soc., Providence, R.I. Zbl0443.58023MR573426
- R.L. Bishop, R.J. Crittenden, Geometry of manifolds, (1964), Academic Press, New York Zbl0132.16003MR169148
- G. Carron, T. Coulhon, E.-M. Ouhabaz, Gaussian estimates and -boundedness of Riesz means, J. Evol. Equ. 2 (2002), 299-317 Zbl1328.35064MR1930609
- J. Cheeger, M. Gromov, M. Taylor, Finite propagation speed, kernel estimates for functions of the Laplace operator, and the geometry of complete Riemannian manifolds, J. Differential Geom. 17 (1982), 15-53 Zbl0493.53035MR658471
- R.R. Coifman, G. Weiss, Extensions of Hardy spaces and their use in analysis, Bull. Amer. Math. Soc. 83 (1977), 569-645 Zbl0358.30023MR447954
- L. De-Michele, I.R. Inglis, estimates for strongly singular integrals on spaces of homogeneous type, J. Funct. Anal. 39 (1980), 1-15 Zbl0461.46039MR593784
- C. Fefferman, Inequalities for strongly singular convolution operators, Acta Math. 124 (1970), 9-36 Zbl0188.42601MR257819
- C. Fefferman, E.M. Stein, spaces of several variables, Acta Math. 129 (1972), 137-193 Zbl0257.46078MR447953
- S. Giulini, S. Meda, Oscillating multipliers on noncompact symmetric spaces, J. Reine Angew. Math. 409 (1990), 93-105 Zbl0696.43007MR1061520
- I. M. Guelfand, G. E. Chilov, Les distributions, (1962), Dunod, Paris Zbl0115.10102MR132390
- I.I. Hirschman, On multiplier transformations, Duke Math. J 26 (1959), 221-242 Zbl0085.09201MR104973
- L. Hörmander, The analysis of linear partial differential operators, Vol. III, (1994), Springer-Verlag, Berlin Zbl0601.35001MR404822
- P. Li, S.-T. Yau, On the parabolic kernel of the Schrödinger operator, Acta Math. 156 (1986), 153-201 Zbl0611.58045MR834612
- N. Lohoué, Estimations des sommes de Riesz d’opérateurs de Schrödinger sur les variétés riemanniennes et les groupes de Lie, C. R. Acad. Sci. Paris Sér. I Math. 315 (1992), 13-18 Zbl0760.58040MR1172399
- N. Lohoué, Estimées des solutions de l’équation des ondes sur les variétés riemanniennes, les groupes de Lie et applications, Harmonic analysis and number theory (Montreal, PQ, 1996) 21 (1997), 103-126, Amer. Math. Soc., Providence, RI Zbl0927.58014MR1472781
- M. Marias, E. Russ, -boundedness of Riesz transforms and imaginary powers of the Laplacian on Riemannian manifolds, To appear in Zbl1038.42016MR1971944
- G. Mauceri, S. Meda, Vector-valued multipliers on stratified groups, Rev. Mat. Iberoamericana 6 (1990), 141-154 Zbl0763.43005MR1125759
- A. Miyachi, Some singular integral transformations bounded in the Hardy space , J. Fac. Sci. Univ. Tokyo Sect. IA Math. 25 (1978), 93-108 Zbl0383.42006MR487232
- A. Miyachi, On some estimates for the wave equation in and , J. Fac. Sci. Univ. Tokyo Sect. IA Math. 27 (1980), 331-354 Zbl0437.35042MR586454
- A. Miyachi, On some singular Fourier multipliers, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 28 (1981), 267-315 Zbl0469.42003MR633000
- S. Rosenberg, The Laplacian on a Riemannian manifold, (1997), Cambridge University Press, Cambridge Zbl0868.58074MR1462892
- M.A. Shubin, Spectral theory of elliptic operators on noncompact manifolds, Astérisque (1992), 35-108 Zbl0793.58039MR1205177
- P. Sjölin, estimates for strongly singular convolution operators in , Ark. Mat. 14 (1976), 59-64 Zbl0321.42017MR412722
- S. Sjöstrand, On the Riesz means of the solutions of the Schrödinger equation, Ann. Scuola Norm. Sup. Pisa (3) 24 (1970), 331-348 Zbl0201.14901MR270219
- E.M. Stein, Singular integrals and differentiability properties of functions, (1970), Princeton University Press, Princeton, N.J. Zbl0207.13501MR290095
- M.E. Taylor, -estimates on functions of the Laplace operator, Duke Math. J. 58 (1989), 773-793 Zbl0691.58043MR1016445
- N. Th. Varopoulos, L. Saloff-Coste, T. Coulhon, Analysis and geometry on groups, (1992), Cambridge University Press, Cambridge Zbl0813.22003MR1218884
- S. Wainger, Special trigonometric series in -dimensions, Mem. Amer. Math. Soc. 59 (1965) Zbl0136.36601MR182838
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.