L p -boundedness of oscillating spectral multipliers on Riemannian manifolds

Michel Marias[1]

  • [1] Department of Mathematics Aristotle University of Thessaloniki Thessaloniki, 54.124 Greece

Annales mathématiques Blaise Pascal (2003)

  • Volume: 10, Issue: 1, page 133-160
  • ISSN: 1259-1734

Abstract

top
We prove endpoint estimates for operators given by oscillating spectral multipliers on Riemannian manifolds with C -bounded geometry and nonnegative Ricci curvature.

How to cite

top

Marias, Michel. "$L^{p}$-boundedness of oscillating spectral multipliers on Riemannian manifolds." Annales mathématiques Blaise Pascal 10.1 (2003): 133-160. <http://eudml.org/doc/10481>.

@article{Marias2003,
abstract = {We prove endpoint estimates for operators given by oscillating spectral multipliers on Riemannian manifolds with $C^\{\infty \}$-bounded geometry and nonnegative Ricci curvature.},
affiliation = {Department of Mathematics Aristotle University of Thessaloniki Thessaloniki, 54.124 Greece},
author = {Marias, Michel},
journal = {Annales mathématiques Blaise Pascal},
keywords = {spectral multipliers; wave equation; Riesz means; wave operators},
language = {eng},
month = {1},
number = {1},
pages = {133-160},
publisher = {Annales mathématiques Blaise Pascal},
title = {$L^\{p\}$-boundedness of oscillating spectral multipliers on Riemannian manifolds},
url = {http://eudml.org/doc/10481},
volume = {10},
year = {2003},
}

TY - JOUR
AU - Marias, Michel
TI - $L^{p}$-boundedness of oscillating spectral multipliers on Riemannian manifolds
JO - Annales mathématiques Blaise Pascal
DA - 2003/1//
PB - Annales mathématiques Blaise Pascal
VL - 10
IS - 1
SP - 133
EP - 160
AB - We prove endpoint estimates for operators given by oscillating spectral multipliers on Riemannian manifolds with $C^{\infty }$-bounded geometry and nonnegative Ricci curvature.
LA - eng
KW - spectral multipliers; wave equation; Riesz means; wave operators
UR - http://eudml.org/doc/10481
ER -

References

top
  1. G. Alexopoulos, Oscillating multipliers on Lie groups and Riemannian manifolds, Tohoku Math. J. (2) 46 (1994), 457-468 Zbl0835.22008MR1301284
  2. G. Alexopoulos, N. Lohoué, Riesz means on Lie groups and Riemannian manifolds of nonnegative curvature, Bull. Soc. Math. France 122 (1994), 209-223 Zbl0832.22014MR1273901
  3. P. Bérard, On the wave equation on a compact Riemannian manifold without conjugate points, Math. Z. 155 (1977), 249-276 Zbl0341.35052MR455055
  4. P. Bérard, Riesz means of Riemannian manifolds, Geometry of the Laplace operator (1980), 1-12, Amer. Math. Soc., Providence, R.I. Zbl0443.58023MR573426
  5. R.L. Bishop, R.J. Crittenden, Geometry of manifolds, (1964), Academic Press, New York Zbl0132.16003MR169148
  6. G. Carron, T. Coulhon, E.-M. Ouhabaz, Gaussian estimates and L p -boundedness of Riesz means, J. Evol. Equ. 2 (2002), 299-317 Zbl1328.35064MR1930609
  7. J. Cheeger, M. Gromov, M. Taylor, Finite propagation speed, kernel estimates for functions of the Laplace operator, and the geometry of complete Riemannian manifolds, J. Differential Geom. 17 (1982), 15-53 Zbl0493.53035MR658471
  8. R.R. Coifman, G. Weiss, Extensions of Hardy spaces and their use in analysis, Bull. Amer. Math. Soc. 83 (1977), 569-645 Zbl0358.30023MR447954
  9. L. De-Michele, I.R. Inglis, L p estimates for strongly singular integrals on spaces of homogeneous type, J. Funct. Anal. 39 (1980), 1-15 Zbl0461.46039MR593784
  10. C. Fefferman, Inequalities for strongly singular convolution operators, Acta Math. 124 (1970), 9-36 Zbl0188.42601MR257819
  11. C. Fefferman, E.M. Stein, H p spaces of several variables, Acta Math. 129 (1972), 137-193 Zbl0257.46078MR447953
  12. S. Giulini, S. Meda, Oscillating multipliers on noncompact symmetric spaces, J. Reine Angew. Math. 409 (1990), 93-105 Zbl0696.43007MR1061520
  13. I. M. Guelfand, G. E. Chilov, Les distributions, (1962), Dunod, Paris Zbl0115.10102MR132390
  14. I.I. Hirschman, On multiplier transformations, Duke Math. J 26 (1959), 221-242 Zbl0085.09201MR104973
  15. L. Hörmander, The analysis of linear partial differential operators, Vol. III, (1994), Springer-Verlag, Berlin Zbl0601.35001MR404822
  16. P. Li, S.-T. Yau, On the parabolic kernel of the Schrödinger operator, Acta Math. 156 (1986), 153-201 Zbl0611.58045MR834612
  17. N. Lohoué, Estimations des sommes de Riesz d’opérateurs de Schrödinger sur les variétés riemanniennes et les groupes de Lie, C. R. Acad. Sci. Paris Sér. I Math. 315 (1992), 13-18 Zbl0760.58040MR1172399
  18. N. Lohoué, Estimées L p des solutions de l’équation des ondes sur les variétés riemanniennes, les groupes de Lie et applications, Harmonic analysis and number theory (Montreal, PQ, 1996) 21 (1997), 103-126, Amer. Math. Soc., Providence, RI Zbl0927.58014MR1472781
  19. M. Marias, E. Russ, H 1 -boundedness of Riesz transforms and imaginary powers of the Laplacian on Riemannian manifolds, To appear in Zbl1038.42016MR1971944
  20. G. Mauceri, S. Meda, Vector-valued multipliers on stratified groups, Rev. Mat. Iberoamericana 6 (1990), 141-154 Zbl0763.43005MR1125759
  21. A. Miyachi, Some singular integral transformations bounded in the Hardy space H 1 ( R n ) , J. Fac. Sci. Univ. Tokyo Sect. IA Math. 25 (1978), 93-108 Zbl0383.42006MR487232
  22. A. Miyachi, On some estimates for the wave equation in L p and H p , J. Fac. Sci. Univ. Tokyo Sect. IA Math. 27 (1980), 331-354 Zbl0437.35042MR586454
  23. A. Miyachi, On some singular Fourier multipliers, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 28 (1981), 267-315 Zbl0469.42003MR633000
  24. S. Rosenberg, The Laplacian on a Riemannian manifold, (1997), Cambridge University Press, Cambridge Zbl0868.58074MR1462892
  25. M.A. Shubin, Spectral theory of elliptic operators on noncompact manifolds, Astérisque (1992), 35-108 Zbl0793.58039MR1205177
  26. P. Sjölin, L p estimates for strongly singular convolution operators in R n , Ark. Mat. 14 (1976), 59-64 Zbl0321.42017MR412722
  27. S. Sjöstrand, On the Riesz means of the solutions of the Schrödinger equation, Ann. Scuola Norm. Sup. Pisa (3) 24 (1970), 331-348 Zbl0201.14901MR270219
  28. E.M. Stein, Singular integrals and differentiability properties of functions, (1970), Princeton University Press, Princeton, N.J. Zbl0207.13501MR290095
  29. M.E. Taylor, L p -estimates on functions of the Laplace operator, Duke Math. J. 58 (1989), 773-793 Zbl0691.58043MR1016445
  30. N. Th. Varopoulos, L. Saloff-Coste, T. Coulhon, Analysis and geometry on groups, (1992), Cambridge University Press, Cambridge Zbl0813.22003MR1218884
  31. S. Wainger, Special trigonometric series in k -dimensions, Mem. Amer. Math. Soc. 59 (1965) Zbl0136.36601MR182838

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.