Bifurcation of closed orbits from a limit cycle in R 2

Vinicio Moauro

Rendiconti del Seminario Matematico della Università di Padova (1981)

  • Volume: 65, page 277-291
  • ISSN: 0041-8994

How to cite

top

Moauro, Vinicio. "Bifurcation of closed orbits from a limit cycle in $R^2$." Rendiconti del Seminario Matematico della Università di Padova 65 (1981): 277-291. <http://eudml.org/doc/107824>.

@article{Moauro1981,
author = {Moauro, Vinicio},
journal = {Rendiconti del Seminario Matematico della Università di Padova},
keywords = {closed orbits; Newton's polygon; bifurcations},
language = {eng},
pages = {277-291},
publisher = {Seminario Matematico of the University of Padua},
title = {Bifurcation of closed orbits from a limit cycle in $R^2$},
url = {http://eudml.org/doc/107824},
volume = {65},
year = {1981},
}

TY - JOUR
AU - Moauro, Vinicio
TI - Bifurcation of closed orbits from a limit cycle in $R^2$
JO - Rendiconti del Seminario Matematico della Università di Padova
PY - 1981
PB - Seminario Matematico of the University of Padua
VL - 65
SP - 277
EP - 291
LA - eng
KW - closed orbits; Newton's polygon; bifurcations
UR - http://eudml.org/doc/107824
ER -

References

top
  1. [1] J.K. Hale, Topics in Dynamic Bifurcation Theory, NSF-CBMS Conference, Arlington - Texas, June 16-20, 1980. Zbl0481.34008MR623461
  2. [2] A.A. Andronov - E. A. LEONTOVICH - I. I. GORDON - A. G. MAIER, Theory of Bifurcations of Dynamic Systems on a Plane, Halsted Press, New York (1973). MR344606
  3. [3] F. Marchetti - P. Negrini - L. Salvadori - M. Scalia, Liapunov direct method in approaching bifurcation problem, Ann. Mat. Pura Appl., (iv) (cviii) (1976), pp. 211-225. Zbl0332.34047MR445076
  4. [4] P. Negrini - L. Salvadori, Attractivity and Hopf bifurcation, Nonlinear Anal., Theory, Meth. and Appl., 3 (1979), pp. 87-99. Zbl0423.34062MR520476
  5. [5] E. Hopf, Abzwelgung einer Periodischen Lösung von einer Stationären Lösung eines Differential Systems, Ber. Verh. Sach. Akad. Wiss Leipsig Math. Nat., 94 (1942), pp. 3-22. Zbl0063.02065MR39141
  6. [6] V. Moauro, Bifurcation of closed paths from a closed path in R2, Proc. of the International Conference on Nonlinear Phenomena in Mathematical Sciences, Arlington - Texas, June 16-20, 1980. Zbl0514.34029

NotesEmbed ?

top

You must be logged in to post comments.