Report on Igusa's local zeta function

Jan Denef

Séminaire Bourbaki (1990-1991)

  • Volume: 33, page 359-386
  • ISSN: 0303-1179

How to cite

top

Denef, Jan. "Report on Igusa's local zeta function." Séminaire Bourbaki 33 (1990-1991): 359-386. <http://eudml.org/doc/110143>.

@article{Denef1990-1991,
author = {Denef, Jan},
journal = {Séminaire Bourbaki},
keywords = {survey; Igusa's local zeta functions; number of solutions of congruences; exponential sums; -adic field; Schwartz-Bruhat function; Haar measure; monodromy; -function; functional equations; prehomogeneous vector spaces; integration on -adic subanalytic sets},
language = {eng},
pages = {359-386},
publisher = {Société Mathématique de France},
title = {Report on Igusa's local zeta function},
url = {http://eudml.org/doc/110143},
volume = {33},
year = {1990-1991},
}

TY - JOUR
AU - Denef, Jan
TI - Report on Igusa's local zeta function
JO - Séminaire Bourbaki
PY - 1990-1991
PB - Société Mathématique de France
VL - 33
SP - 359
EP - 386
LA - eng
KW - survey; Igusa's local zeta functions; number of solutions of congruences; exponential sums; -adic field; Schwartz-Bruhat function; Haar measure; monodromy; -function; functional equations; prehomogeneous vector spaces; integration on -adic subanalytic sets
UR - http://eudml.org/doc/110143
ER -

References

top
  1. [1] N.A.' Campo, La fonction zêta d'une monodromie, Comment. Math. Helv.50 (1975), 233-248. Zbl0333.14008MR371889
  2. [2] M.F. Atiyah, Resolution of singularities and division of distributions, Comm. pure Appl. Math.23 (1970), 145-150. Zbl0188.19405MR256156
  3. [3] D. Barlet, Contribution effective de la monodromie aux développements asymptotiques, Ann. Sci. Ec. Norm. Sup.17 (1984), 293-315. Zbl0542.32003MR760679
  4. [4] I.N. Bernstein, The analytic continuation of generalized functions with respect to a parameter, Funct. Anal. Appl.6 (1972), 273-285. Zbl0282.46038MR320735
  5. [5] I.N. Bernstein and S.I. Gel'fand, Meromorphic property of the function Pλ, Funct. Anal. Appl.3 (1969), 68-69. Zbl0208.15201
  6. [6] D. Bollaerts, On the Poincaré series associated to the p-adic points on a curve, Acta Arithmetica LI (1988), 9-30. Zbl0608.12021MR959783
  7. [7] B. Datskovsky and D.J. Wright, Density of discriminants of cubic extensions, J. reine angew. Math.386 (1988), 116-138. Zbl0632.12007MR936994
  8. [8] P. Deligne, La conjecture de Weil I, Pub. math. I.H.E.S.43 (1974), 273-307. Zbl0287.14001MR340258
  9. [9] P. Deligne, Cohomologie Etale (SGA 4 1/2), Lecture Notes in Math.569, Springer, Heidelberg, 1977. Zbl0345.00010MR463174
  10. [10] J. Denef, The rationality of the Poincaré series associated to the p-adic points on a variety, Invent. Math.77 (1984), 1-23. Zbl0537.12011MR751129
  11. [11] J. Denef, On the evaluation of certain p-adic integrals, Séminaire de Théorie des Nombres Paris1983-84, Progress in Math.59, Birkaüser, 1985, pp. 25-47. Zbl0597.12021MR902824
  12. [12] J. Denef, On the degree of Igusa's local zeta function, Amer. J. Math.109 (1987), 991-1008. Zbl0659.14017MR919001
  13. [13] J. Denef, Multiplicity of the poles of the Poincaré series of a p-adic subanalytic set, Séminaire de Théorie des Nombres de Bordeaux, 1987-1988, Exposé n° 43. Zbl0682.12013
  14. [14] J. Denef, Local zeta functions and Euler characteristics, Duke Math. J.63 (1991), 713-721. Zbl0738.11060MR1121152
  15. [15] J. Denef, Degree of local zeta functions and monodromy, in preparation. Zbl0932.11073
  16. [16] J. Denef et F. Loeser, Caractéristiques d'Euler-Poincaré, Fonctions zêta locales et Modifications analytiques, to appear. Zbl0777.32017
  17. [17] J. Denef and D. Meuser, A Functional Equation of Igusa's Local Zeta Function, Amer. J. Math. (1991), to appear. Zbl0749.11053MR1137535
  18. [18] J. Denef and P. Sargos, Polyèdre de Newton et distribution fs+. I, J. Analyse Math.53 (1989), 201-218; Polyèdre de Newton et distribution fs+. II, to appear. Zbl0693.32003MR1014986
  19. [19] J. Denef and L. Van Den Dries, p-adic and real subanalytic sets, Annals of Math.128 (1988), 79-138. Zbl0693.14012MR951508
  20. [20] M. Du Sautoy, Finitely generated groups, p-adic analytic groups, and Poincaré series, Bull. Amer. Math. Soc.23 (1990), 121-126. Zbl0724.22010MR1021793
  21. [21] B. Dwork, On the rationality of the zeta function of an algebraic variety, Amer. J. Math.82 (1960), 631-648. Zbl0173.48501MR140494
  22. [22] A. Grothendieck, P. Deligne and N. Katz, Groupes de Monodromie en Géométrie Algébrique (SGA7), Lecture Notes in Math.288,340 (1972-73), Springer, Heidelberg. 
  23. [23] A. Gyoja, Theory of Prehomogeneous Spaces, preprint 90 pp.. 
  24. [24] A. Gyoja, Lefschetz principle in the theory of prehomogeneous vector spaces, preprint. Zbl0806.14040MR1210784
  25. [25] H. Hironaka, Resolution of singularities of an algebraic variety over a field of characteristic zero, Ann. Math.79 (1964), 109-326. Zbl0122.38603MR199184
  26. [26] J. Igusa, On the arithmetic of Pfaffians, Nagoya Math. J.47 (1972), 169-198. Zbl0251.20044MR376623
  27. [27] J. Igusa, On a certain Poisson formula, Nagoya Math. J.53 (1974), 211-233. Zbl0283.43004MR347774
  28. [28] J. Igusa, Complex powers and asymptotic expansions I, J. reine angew. Math.268/269 (1974), 110-130; ; II, ibid278/279 (1975), 307-321. Zbl0315.41029
  29. [29] J. Igusa, Exponential sums associated with a Freudenthal quartic, J. Fac. Sci. Univ. Tokyo24 (1977), 231-246. Zbl0355.43005MR447140
  30. [30] J. Igusa, Lectures on forms of higher degree, Tata Inst. Fund. Research, Bombay, 1978. Zbl0417.10015MR546292
  31. [31] J. Igusa, Some results on p-adic complex powers, Amer. J. Math.106 (1984), 1013-1032. Zbl0589.14023MR761577
  32. [32] J. Igusa, Complex powers of irreducible algebroid curves, Geometry today, Roma1984, Progress in Math.60, Birkhaüser, 1985, pp. 207-230. Zbl0605.14029MR895155
  33. [33] J. Igusa, On functional equations of complex powers, Invent. Math.85 (1986), 1-29. Zbl0599.12017MR842045
  34. [34] J. Igusa, Some aspects of the arithmetic theory of polynomials, Discrete Groups in Geometry and Analysis, Progress in Math.67, Birkhaüser, 1987, pp. 20-47. Zbl0649.10016MR900822
  35. [35] J. Igusa, Zeta distributions associated with some invariants, Amer. J. Math.109 (1987), 1-34. Zbl0616.12006MR878195
  36. [36] J. Igusa, B-functions and p-adic integrals, Algebraic Analysis, Academic Press, 1988, pp. 231-241. Zbl0709.11070MR992457
  37. [37] J. Igusa, On the arithmetic of a singular invariant, Amer. J. Math110 (1988), 197-233. Zbl0662.12014MR935005
  38. [38] J. Igusa, Universal p-adic zeta functions and their functional equations, Amer. J. Math.111 (1989), 671-716. Zbl0707.14016MR1020825
  39. [39] J. Igusa, A problem on certain p-adic zeta functions, Israel Math. Conf. Proc.3 (1990), 67-79. Zbl0709.11069MR1159109
  40. [40] J. Igusa, Local zeta functions of certain prehomogeneous vector spaces, preprint (1991). 
  41. [41] L. Illusie, Théorie de Brauer et caractéristique d'Euler-Poincaré (d'après P. Deligne), Astérisque82-83, pp. 161-172. Zbl0496.14013MR629127
  42. [42] T. Kimura, The b-functions and holonomy diagrams of irreducible regular prehomogeneous vector spaces, Nagoya Math. J.85 (1982), 1-80. Zbl0451.58035MR648417
  43. [43] T. Kimura, Complex powers on p-adic fields and a resolution of singularities, Algebraic Analysis, Academic Press, 1988, pp. 345-355. Zbl0683.12009MR992466
  44. [44] T. Kimura, Iuasawa-Tate Theory of prehomogeneous vector spaces with Za = τZm, preprint. 
  45. [45] T. Kimura and T. Kogiso, On adelic zeta functions of prehomogeneous vector spaces with finitely many adelic open orbits, Adv. Stud. in Pure Math.21 (1991), 1-11. Zbl0796.11016MR1210781
  46. [46] T. Kimura, F. Sato and X. Zhu, On the poles of p-adic complex powers and the b-functions of prehomogeneous vector spaces, Amer. J. Math.122 (1990), 423-437. Zbl0712.11071MR1055652
  47. [47] R.P. Langlands, Orbital integrals on forms of SL(3) I, Amer. J. Math.105 (1983), 465-506. Zbl0525.22012MR701566
  48. [48] B. Lichtin and D. Meuser, Poles of a local zeta function and Newton polygons, Compositio Math.55 (1985), 313-332. Zbl0606.14022MR799820
  49. [49] L. Lipshitz, Rigid subanalytic sets, Amer. J. Math., to appear. Zbl0792.14010MR1209235
  50. [50] F. Loeser, Quelques conséquences locales de la théorie de Hodge, Ann. Institut Fourier35 (1985), 75-92. Zbl0862.32020MR781779
  51. [51] F. Loeser, Une estimation asyrnptotique du nombre de solutions approchées d'une équation p-adique, Invent. Math.85 (1986), 31-38. Zbl0607.12008MR842046
  52. [52] F. Loeser, Fonctions d'Igusa p-adiques et polynômes de Bernstein, Amer. J. Math.110 (1988), 1-22. Zbl0644.12007MR926736
  53. [53] F. Loeser, Fonctions zêta locales d'Igusa a plusieurs variables, intégration dans les fibres, et discriminants, Ann. Scient. Ec. Norm. Sup.22 (1989), 435-471. Zbl0718.11061MR1011989
  54. [54] F. Loeser, Fonctions d'Igusa p-adiques, polynômes de Bernstein, et polyèdres de Newton, J. reine angew. Math.412 (1990), 75-96. Zbl0713.11083MR1079002
  55. [55] A. Macintyre, On definable subsets of p-adic fields, J. Symb. Logic41 (1976), 605-610. Zbl0362.02046MR485335
  56. [56] A. Macintyre, Rationality of p-adic Poincaré series: Uniformity in p, Ann. Pure Appl. Logic, to appear. Zbl0731.12015MR1076249
  57. [57] B. Malgrange, Intégrales asymptotiques et monodromie, Ann. Scient. Ec. Norm. Sup.7 (1974), 405-430. Zbl0305.32008MR372243
  58. [58] B. Malgrange, Polynômes de Bernstein-Sato et cohomologie évanescente, Astérisque101/102 (1983), 243-267. Zbl0528.32007MR737934
  59. [59] D. Meuser, On the rationality of certain generating functions, Math. Ann.256 (1981), 303-310. Zbl0471.12014MR626951
  60. [60] D. Meuser, On the poles of a local zeta function for curves, Invent. Math.73 (1983), 445-465. Zbl0503.14009MR718941
  61. [61] D. Meuser, The meromorphic continuation of a zeta function of Weil and Igusa type, Invent. Math.85 (1986), 493-514. Zbl0571.12009MR848683
  62. [62] D. Meuser, On a functional equation of Igusa's local zeta function, p-adic Analysis, Proceedings Trento1989, Lecture Notes in Math.1454, Springer, 1990, pp. 309-313. Zbl0723.14015MR1094859
  63. [63] J. Milnor, Singular points of complex hypersurfaces, Princeton Univ. Press, 1968. Zbl0184.48405MR239612
  64. [64] J. Oesterlé, Réduction modulo pn des sous-ensembles analytiques fermés de ZNp, Invent. Math.66 (1982), 325-341. Zbl0473.12015MR656627
  65. [65] T. Ono, An integral attached to a hypersurface, Amer. J. Math.90 (1968), 1224-1236. Zbl0182.54401MR238851
  66. [66] J. Pas, Uniform p-adic cell decomposition and local zeta functions, J. reine angew. Math.399 (1989), 137-172. Zbl0666.12014MR1004136
  67. [67] J. Pas, Cell decomposition and local zeta functions in a tower of unramified extensions of a p-adic field, Proc. London Math. Soc.60 (1990), 37-67. Zbl0659.12017MR1023804
  68. [68] J. Pas, Local zeta functions and Meuser's invariant functions, J. Number Theory38 (1991), 278-299. Zbl0734.11071MR1114480
  69. [69] M. Sato and T. Kimura, A classification of irreducible prehomogeneous vector spaces and their relative invariants, Nagoya Math. J.65 (1977), 1-155. Zbl0321.14030MR430336
  70. [70] M. Sato and T. Shintani, On zeta functions associated with prehomogeneous vector spaces, Ann. Math100 (1974), 131-170. Zbl0309.10014MR344230
  71. [71] H. Schoutens, Approximation and subanalytic sets over a complete valuation ring, Ph. D thesis (Leuven 1991). 
  72. [72] J.-P. Serre, Quelques applications du théorème de densité de Chebotarev, Publ. Math. I.H.E.S.54 (1981), 123-201. Zbl0496.12011MR644559
  73. [73] J.-P. Serre, Méthodes adéliques, Résumé des cours et travaux, Collège de France (1981-1982), 81-89; Collected papers III, (1986) pp. 649-657, Springer-Verlag. 
  74. [74] L. Strauss, Poles of a two-variable p-adic complex power, Trans. Amer. Math. Soc.278 (1983), 481-493. Zbl0524.14024MR701506
  75. [75] B. Teissier, Théorèmes de finitude en géométrie analytique (d'après H. Hironaka), Séminaire Bourbaki451 (1973-74), Lecture Notes in Math.431, Springer, Heidelberg, 1975. Zbl0333.32009MR477119
  76. [76] R. Thom et M. Sebastiani, Un résultat sur la monodromie, Invent. Math.13 (1971), 90-96. Zbl0233.32025MR293122
  77. [77] L. Van Den Dries, Analytic Ax-Kochen-Ersov Theorems, preprint. MR1175894
  78. [78] A. Varchenko, Newton polyhedra and estimation of oscillating integrals, Funct. Anal. Appl.10 (1976), 13-38. Zbl0351.32011MR422257
  79. [79] W. Veys, On the poles of Igusa's local zeta function for curves, J. London Math. Soc.41 (1990), 27-32. Zbl0659.14016MR1063539
  80. [80] W. Veys, Relations between numerical data of an embedded resolution, Amer. J. Math., to appear. Zbl0742.14009MR1118455
  81. [81] W. Veys, Congruences for numerical data of an embedded resolution, Compositio Math., to appear. Zbl0764.14008MR1132091
  82. [82] W. Veys, Poles of Igusa's local zeta function and monodromy, preprint.See also: Numerical Data of resolutions of singularities and Igusa's local zeta function , Ph. D. thesis (Leuven 1991). 
  83. [83] A. Weil, Sur la formule de Siegel dans la théorie des groupes classiques, Acta Math.113 (1965), 1-87. Zbl0161.02304MR223373

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.