Surfaces quasiminimales de codimension 1 et domaines de John

G. David; S. Semmes

Séminaire Équations aux dérivées partielles (Polytechnique) (1995-1996)

  • page 1-17

How to cite

top

David, G., and Semmes, S.. "Surfaces quasiminimales de codimension 1 et domaines de John." Séminaire Équations aux dérivées partielles (Polytechnique) (1995-1996): 1-17. <http://eudml.org/doc/112121>.

@article{David1995-1996,
author = {David, G., Semmes, S.},
journal = {Séminaire Équations aux dérivées partielles (Polytechnique)},
language = {fre},
pages = {1-17},
publisher = {Ecole Polytechnique, Centre de Mathématiques},
title = {Surfaces quasiminimales de codimension 1 et domaines de John},
url = {http://eudml.org/doc/112121},
year = {1995-1996},
}

TY - JOUR
AU - David, G.
AU - Semmes, S.
TI - Surfaces quasiminimales de codimension 1 et domaines de John
JO - Séminaire Équations aux dérivées partielles (Polytechnique)
PY - 1995-1996
PB - Ecole Polytechnique, Centre de Mathématiques
SP - 1
EP - 17
LA - fre
UR - http://eudml.org/doc/112121
ER -

References

top
  1. [Al] F.J. Almgren, Existence and regularity almost everywhere of solutions to elliptic variational problems with constraints, Memoirs of the Amer. Math. Soc. 165, volume 4 (1976), i-199. Zbl0327.49043MR420406
  2. [DJe] G. David et D. Jerison, Lipschitz approximations to hypersurfaces, harmonic measure, and singular integrals, Indiana U. Math. Journal.39, 3 (1990),831-845. Zbl0758.42008MR1078740
  3. [DS1] G. David et S. Semmes, Quantitative rectifiability and Lipschitz mappings, Transactions A.M.S.337 (1993), 855-889. Zbl0792.49029MR1132876
  4. [DS2] G. David et S. Semmes, Analysis of and on uniformly rectifiable sets, A.M.S series of Mathematical surveys and monographs, Volume 38, 1993. Zbl0832.42008MR1251061
  5. [DS3] G. David et S. Semmes, Uniform rectifiability and Singular sets, à paraître, Annales de l'I.H.P. Zbl0908.49030
  6. [DS4] G. David et S. Semmes, Quasiminimal surfaces of codimension 1 and John domains, préprint IHES, 1996. Zbl0948.49501
  7. [DS5] G. David et S. Semmes, Surfaces quasiminimales de codimension 1: un morceau de démonstration, actes du colloque E.D.P. de St Jean de Monts, Juin 1996. Zbl0948.49500MR1417733
  8. [DS6] G. David et S. Semmes, Uniform rectifiability of quasiminimal surfaces of codimension 1 (titre approximatif), preprint, fin 1996. 
  9. [JKV] P. Jones, N. Katz et A. Vargas, Checkerboards, Lipschitz functions and uniform rectifiability, à paraître, Revista Mat. Iberoamericana. Zbl0908.49029
  10. [Ma] P. Mattila, Geometry of sets and measures in Euclidean space, Cambridge University Press1995. Zbl0819.28004MR1333890
  11. [Po] C. Pommerenke, Boundary behaviour of conformal maps, Grundslehren der Mathematischen Wissenchaften 299, Springer-Verlag1992. Zbl0762.30001MR1217706
  12. [Se1] S. Semmes, A criterion for the boundedness of singular integrals on hypersurfaces, Trans. A.M.S. 311, 2 (1989), 501-513. Zbl0675.42015MR948198
  13. [Se2] S. Semmes, Analysis, geometry, and topology with little smoothness, nontrivial structure, and infinite complexity, Proceedings of the I.C.M. Kyoto. 
  14. [St] E.M. Stein, Singular integrals and differentiability properties of functions, Princeton university press 1970. Zbl0207.13501MR290095

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.