Williams' characterisation of the brownian excursion law : proof and applications

L. C. G. Rogers

Séminaire de probabilités de Strasbourg (1981)

  • Volume: 15, page 227-250

How to cite

top

Rogers, L. C. G.. "Williams' characterisation of the brownian excursion law : proof and applications." Séminaire de probabilités de Strasbourg 15 (1981): 227-250. <http://eudml.org/doc/113325>.

@article{Rogers1981,
author = {Rogers, L. C. G.},
journal = {Séminaire de probabilités de Strasbourg},
keywords = {Brownian excursion law; local time; Skorokhod problem; Bessel process; path decomposition; Laplace transforms},
language = {eng},
pages = {227-250},
publisher = {Springer - Lecture Notes in Mathematics},
title = {Williams' characterisation of the brownian excursion law : proof and applications},
url = {http://eudml.org/doc/113325},
volume = {15},
year = {1981},
}

TY - JOUR
AU - Rogers, L. C. G.
TI - Williams' characterisation of the brownian excursion law : proof and applications
JO - Séminaire de probabilités de Strasbourg
PY - 1981
PB - Springer - Lecture Notes in Mathematics
VL - 15
SP - 227
EP - 250
LA - eng
KW - Brownian excursion law; local time; Skorokhod problem; Bessel process; path decomposition; Laplace transforms
UR - http://eudml.org/doc/113325
ER -

References

top
  1. [1] Azema, J., Yor M., Une solution simple au problème de Skorokhod. Séminaire de Probabilités XIII, SLN721, Springer (1979). Zbl0414.60055MR544782
  2. [2] Itô K., Poisson point processes attached to Markov processes. Proc. 6th Berkeley Symposium Math. Statist. and Prob.Univ. of California Press (1971). Zbl0284.60051MR402949
  3. [31 Jeulin, T., Yor M., Lois de certaines fonctionelles du mouvement Brownien et de son temps Local. Séminaire de Probabilités XV (1981). 
  4. [4] Knight, F.B.On the sojourn times of killed Brownian motion. Séminaire de Probabilités XII, SLN649, Springer (1978). Zbl0376.60082MR520018
  5. [5] Lehoczky, J.Formulas for stopped diffusion processes with stopping times based on the maximum. Ann. Probability5 pp.601-608 (1977). Zbl0367.60093MR458570
  6. [6] Pierre, M.Le problème de Skorokhod; Une remarque sur la démonstration d'Azéma-Yor. Séminaire de Probabilités XIV, SLN784, Springer (1980). Zbl0426.60048MR580143
  7. [7] Taylor, H.M.A stopped Brownian motion formula. Ann. Probability3 pp.234-246 (1975). Zbl0303.60072MR375486
  8. [8] Williams, D.Path decomposition and continuity of local time for one-dimensional diffusions. Proc. London Math. Soc. (3) 28 pp.738-768 (1974). Zbl0326.60093MR350881
  9. [91 Williams, D.On a stopped Brownian motion formula of H.M. Taylor. Séminaire de Probabilités X, SLN511, Springer (1976). Zbl0368.60056MR461687
  10. [10] Williams, D.The Itô excursion law for Brownian motion. (unpublished-but see §II.67 of Williams' book 'Diffusions,Markov processes, and martingales' (Wiley, 1979).) 

Citations in EuDML Documents

top
  1. Jacques Neveu, James W. Pitman, The branching process in a brownian excursion
  2. L. C. G. Rogers, Brownian local times and branching processes
  3. Richard F. Bass, L p inequalities for functionals of brownian motion
  4. David G. Hobson, The maximum maximum of a martingale
  5. Romain Abraham, Un arbre aléatoire infini associé à l'excursion brownienne
  6. Jean-François Le Gall, Une approche élémentaire des théorèmes de décomposition de Williams
  7. Marc Yor, Introduction au calcul stochastique
  8. Jean-Michel Bismut, The calculus of boundary processes

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.