Calculs formels sur les e.d.s. de Stratonovitch

Yao-Zhong Hu

Séminaire de probabilités de Strasbourg (1990)

  • Volume: 24, page 453-460

How to cite

top

Hu, Yao-Zhong. "Calculs formels sur les e.d.s. de Stratonovitch." Séminaire de probabilités de Strasbourg 24 (1990): 453-460. <http://eudml.org/doc/113737>.

@article{Hu1990,
author = {Hu, Yao-Zhong},
journal = {Séminaire de probabilités de Strasbourg},
keywords = {Hausdorff-Campell formula; stochastic differential equation},
language = {fre},
pages = {453-460},
publisher = {Springer - Lecture Notes in Mathematics},
title = {Calculs formels sur les e.d.s. de Stratonovitch},
url = {http://eudml.org/doc/113737},
volume = {24},
year = {1990},
}

TY - JOUR
AU - Hu, Yao-Zhong
TI - Calculs formels sur les e.d.s. de Stratonovitch
JO - Séminaire de probabilités de Strasbourg
PY - 1990
PB - Springer - Lecture Notes in Mathematics
VL - 24
SP - 453
EP - 460
LA - fre
KW - Hausdorff-Campell formula; stochastic differential equation
UR - http://eudml.org/doc/113737
ER -

References

top
  1. [1] Ben Arous ( G.). Flots et séries de Taylor stochastiques. Prob. Th. Rel. Fields, 81, 1989, p.29-77. Zbl0639.60062MR981567
  2. [2] Chen ( K.T.). Integration of paths, geometric invariants and a generalized Baker-Hausdorff formula. Ann. Math., 65, 1957, p. 163-178. Zbl0077.25301MR85251
  3. [3] Chen ( K.T.). Expansion of solutions of differential systems. Arch. Rat. Mech. Anal., 13, 1963, p. 348-363. Zbl0117.04802MR157032
  4. [4] Davies ( E.B.). One Parameter Semi-groups, Academic Press, 1980. Zbl0457.47030MR591851
  5. [5] Fliess ( M.) et Norman-Cyrot ( D.). Algèbres de Lie nilpotentes, formule de Campbell-Baker-Hausdorff et intégrales itérées de Chen. Sém. Prob. XVI, LN920, p. 257-267, Springer1982. Zbl0495.60064MR658689
  6. [6] Kato ( T.). Perturbation theory for linear operators, 2nd edition, Springer1976. Zbl0342.47009MR407617
  7. [7] Kunita ( H.). On the representation of solutions of stochastic differential equations. Sém. Prob. XIV, LN784, p. 282-304, Springer1980. Zbl0438.60047MR580134
  8. [8] Marcus ( S.I.). Modeling and approximation of stochastic differential equations driven by semimartingales. Stochastics, 4, 1981, p. 223-245. Zbl0456.60064MR605630
  9. [9] McShane ( E.J.). Stochastic differential equationsJ. Multiv. Anal., 6,1975, p.121-177. Zbl0323.60059MR373006
  10. [10] Postnikov ( M.M.). Leçons de géométrie : Groupes et algèbres de Lie. Editions MIR, Moscou1982. MR831660
  11. [11] Strichartz ( R.S.). The Campbell-Baker-Hausdorff-Dynkin formula and solutions of differential equations. J. Funct. Anal., 72, 1987, p. 320-345. Zbl0623.34058MR886816

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.