Lévy-Gromov's isometric inequality for an infinite dimensional diffusion generator.
Inventiones mathematicae (1996)
- Volume: 123, Issue: 2, page 259-282
- ISSN: 0020-9910; 1432-1297/e
Access Full Article
topHow to cite
topLedoux, M., and Bakry, D.. "Lévy-Gromov's isometric inequality for an infinite dimensional diffusion generator.." Inventiones mathematicae 123.2 (1996): 259-282. <http://eudml.org/doc/144345>.
@article{Ledoux1996,
author = {Ledoux, M., Bakry, D.},
journal = {Inventiones mathematicae},
keywords = {Lévy-Gromov isoperimetric inequality; invariant measure; infinite-dimensional diffusion generator; Gaussian measure; Gaussian isoperimetric inequality; Sobolev inequality; heat kernel measures; Wiener measure},
number = {2},
pages = {259-282},
title = {Lévy-Gromov's isometric inequality for an infinite dimensional diffusion generator.},
url = {http://eudml.org/doc/144345},
volume = {123},
year = {1996},
}
TY - JOUR
AU - Ledoux, M.
AU - Bakry, D.
TI - Lévy-Gromov's isometric inequality for an infinite dimensional diffusion generator.
JO - Inventiones mathematicae
PY - 1996
VL - 123
IS - 2
SP - 259
EP - 282
KW - Lévy-Gromov isoperimetric inequality; invariant measure; infinite-dimensional diffusion generator; Gaussian measure; Gaussian isoperimetric inequality; Sobolev inequality; heat kernel measures; Wiener measure
UR - http://eudml.org/doc/144345
ER -
Citations in EuDML Documents
top- Mireille Capitaine, Sur une inégalité de Sobolev logarithmique pour une diffusion unidimensionnelle
- Pierre Fougères, Hypercontractivité et isopérimétrie gaussienne. Applications aux systèmes de spins
- Yao-Zhong Hu, A unified approach to several inequalities for gaussian and diffusion measures
- A. Guionnet, B. Zegarlinski, Lectures on Logarithmic Sobolev Inequalities
- F. Barthe, B. Maurey, Some remarks on isoperimetry of gaussian type
- Michel Ledoux, Logarithmic Sobolev inequalities for unbounded spin systems revisited
- Franck Barthe, Levels of concentration between exponential and Gaussian
- César Rosales, Isoperimetric and Stable Sets for Log-Concave Perturbations of Gaussian Measures
- Michel Ledoux, Concentration of measure and logarithmic Sobolev inequalities
- Michel Ledoux, The geometry of Markov diffusion generators
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.