Existence and regularity for a minimum problem with free boundary.
Journal für die reine und angewandte Mathematik (1981)
- Volume: 325, page 105-144
- ISSN: 0075-4102; 1435-5345/e
Access Full Article
topHow to cite
topAlt, H.W., and Caffarelli, L.A.. "Existence and regularity for a minimum problem with free boundary.." Journal für die reine und angewandte Mathematik 325 (1981): 105-144. <http://eudml.org/doc/152360>.
@article{Alt1981,
author = {Alt, H.W., Caffarelli, L.A.},
journal = {Journal für die reine und angewandte Mathematik},
keywords = {minimum problem; harmonic function; free boundary conditions; two dimensional flow problems; heat flow problems; non-degeneracy of the solution; regularity; subharmonic function; regularity theory for minimal surfaces; existense; obstacle problems},
pages = {105-144},
title = {Existence and regularity for a minimum problem with free boundary.},
url = {http://eudml.org/doc/152360},
volume = {325},
year = {1981},
}
TY - JOUR
AU - Alt, H.W.
AU - Caffarelli, L.A.
TI - Existence and regularity for a minimum problem with free boundary.
JO - Journal für die reine und angewandte Mathematik
PY - 1981
VL - 325
SP - 105
EP - 144
KW - minimum problem; harmonic function; free boundary conditions; two dimensional flow problems; heat flow problems; non-degeneracy of the solution; regularity; subharmonic function; regularity theory for minimal surfaces; existense; obstacle problems
UR - http://eudml.org/doc/152360
ER -
Citations in EuDML Documents
top- Raul B. Gonzalez de Paz, On the optimal design of elastic shafts
- N. E. Aguilera, L. A. Caffarelli, J. Spruck, An optimization problem in heat conduction
- Ana Cristina Barroso, José Matias, On a volume constrained variational problem in SBV : part I
- Gian Paolo Leonardi, -convergence of constrained Dirichlet functionals
- Timo Tiihonen, Shape optimization and trial methods for free boundary problems
- Tanguy Briancon, Regularity of optimal shapes for the Dirichlet’s energy with volume constraint
- Tanguy Briançon, Jimmy Lamboley, Regularity of the optimal shape for the first eigenvalue of the laplacian with volume and inclusion constraints
- C. Lederman, A free boundary problem with a volume penalization
- Luis A. Caffarelli, A Harnack inequality approach to the regularity of free boundaries. Part III : existence theory, compactness, and dependence on
- Hans Wilhelm Alt, Luis A. Caffarelli, Avner Friedman, A free boundary problem for quasi-linear elliptic equations
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.