The existence and uniqueness theorem in Biot's consolidation theory
Aplikace matematiky (1984)
- Volume: 29, Issue: 3, page 194-211
- ISSN: 0862-7940
Access Full Article
topAbstract
topHow to cite
topŽeníšek, Alexander. "The existence and uniqueness theorem in Biot's consolidation theory." Aplikace matematiky 29.3 (1984): 194-211. <http://eudml.org/doc/15348>.
@article{Ženíšek1984,
abstract = {Existence and uniqueness theorem is established for a variational problem including Biot's model of consolidation of clay. The proof of existence is constructive and uses the compactness method. Error estimates for the approximate solution obtained by a method combining finite elements and Euler's backward method are given.},
author = {Ženíšek, Alexander},
journal = {Aplikace matematiky},
keywords = {Existence; uniqueness; variational problem; Biot’s model; compactness method; approximate solution; finite elements; Euler’s backward method; Existence; uniqueness; variational problem; Biot's model; compactness method; approximate solution; finite elements; Euler's backward method},
language = {eng},
number = {3},
pages = {194-211},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {The existence and uniqueness theorem in Biot's consolidation theory},
url = {http://eudml.org/doc/15348},
volume = {29},
year = {1984},
}
TY - JOUR
AU - Ženíšek, Alexander
TI - The existence and uniqueness theorem in Biot's consolidation theory
JO - Aplikace matematiky
PY - 1984
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 29
IS - 3
SP - 194
EP - 211
AB - Existence and uniqueness theorem is established for a variational problem including Biot's model of consolidation of clay. The proof of existence is constructive and uses the compactness method. Error estimates for the approximate solution obtained by a method combining finite elements and Euler's backward method are given.
LA - eng
KW - Existence; uniqueness; variational problem; Biot’s model; compactness method; approximate solution; finite elements; Euler’s backward method; Existence; uniqueness; variational problem; Biot's model; compactness method; approximate solution; finite elements; Euler's backward method
UR - http://eudml.org/doc/15348
ER -
References
top- M. A. Biot, 10.1063/1.1712886, J. Appl. Phys. 12 (1941), p. 155. (1941) DOI10.1063/1.1712886
- J. R. Booker, 10.1093/qjmam/26.4.457, Quart. J. Mech. Appl. Math. 26 (1973), 457-470. (1973) DOI10.1093/qjmam/26.4.457
- J. Céa, Optimization, Dunod, Paris, 1971. (1971) Zbl0231.94026MR0298892
- A. Kufner O. John S. Fučík, Function Spaces, Academia, Prague, 1977. (1977) MR0482102
- J. L. Lions, Quelques méthodes de résolution des problèmes aux limites non linéaires, Dunod and Gauthier-Villars, Paris, 1969. (1969) Zbl0189.40603MR0259693
- R. Теmаm, Navier-Stokes Equations, North-Holland, Amsterdam, 1977. (1977)
- M. Zlámal, 10.1137/0710022, SIAM J. Numer. Anal. 10 (1973), 229-240. (1973) MR0395263DOI10.1137/0710022
- M. Zlámal, Finite element solution of quasistationary nonlinear magnetic field, R. A.I.R.O. Anal. Num. 16 (1982), 161-191. (1982) MR0661454
- A. Ženíšek, Finite element methods for coupled thermoelasticity and coupled consolidation of clay, (To appear.) MR0743885
- K. Rektorys, The Method of Discretization in Time and Partial Differential Equations, D. Reidel Publishing Company, Dordrecht - SNTL, Prague, 1982. (1982) Zbl0522.65059MR0689712
Citations in EuDML Documents
top- Jiří V. Horák, On solvability of one special problem of coupled thermoelasticity. I. Classical boundary conditions and steady sources
- Alexander Ženíšek, Finite element methods for coupled thermoelasticity and coupled consolidation of clay
- Jozef Kačur, Alexander Ženíšek, Analysis of approximate solutions of coupled dynamical thermoelasticity and related problems
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.