A general version of the fundamental theorem of asset pricing.
Freddy Delbaen; Walter Schachermayer
Mathematische Annalen (1994)
- Volume: 300, Issue: 3, page 463-520
- ISSN: 0025-5831; 1432-1807/e
Access Full Article
topHow to cite
topDelbaen, Freddy, and Schachermayer, Walter. "A general version of the fundamental theorem of asset pricing.." Mathematische Annalen 300.3 (1994): 463-520. <http://eudml.org/doc/165264>.
@article{Delbaen1994,
author = {Delbaen, Freddy, Schachermayer, Walter},
journal = {Mathematische Annalen},
keywords = {asset pricing; stochastic process; equivalent martingale measure; no arbitrage condition; no free lunch},
number = {3},
pages = {463-520},
title = {A general version of the fundamental theorem of asset pricing.},
url = {http://eudml.org/doc/165264},
volume = {300},
year = {1994},
}
TY - JOUR
AU - Delbaen, Freddy
AU - Schachermayer, Walter
TI - A general version of the fundamental theorem of asset pricing.
JO - Mathematische Annalen
PY - 1994
VL - 300
IS - 3
SP - 463
EP - 520
KW - asset pricing; stochastic process; equivalent martingale measure; no arbitrage condition; no free lunch
UR - http://eudml.org/doc/165264
ER -
Citations in EuDML Documents
top- Stefan Ankirchner, Peter Imkeller, Finite utility on financial markets with asymmetric information and structure properties of the price dynamics
- Alena Henclová, Notes on free lunch in the limit and pricing by conjugate duality theory
- Pierre Bertrand, La mémoire longue en économie : discussion et commentaires
- Wolfgang J. Runggaldier, Sugli sviluppi della matematica applicata in un settore interdisciplinare: la finanza matematica
- Maurizio Pratelli, Alcuni problemi matematici legati alla gestione ottima di un portafoglio
- Freddy Delbaen, Walter Schachermayer, The Banach space of workable contingent claims in arbitrage theory
- F. Delbaen, W. Schachermayer, Attainable claims with p'th moments
- Jiří Hozman, Tomáš Tichý, Option valuation under the VG process by a DG method
- Werner Brannath, Walter Schachermayer, A bipolar theorem for L
- Nils Reich, Wavelet compression of anisotropic integrodifferential operators on sparse tensor product spaces
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.