The Maximal Number of Quotient Singularities on Surfaces with Given Numerical Invariants.
Mathematische Annalen (1984)
- Volume: 268, page 159-172
- ISSN: 0025-5831; 1432-1807/e
Access Full Article
topHow to cite
topMiyaoka, Yoichi. "The Maximal Number of Quotient Singularities on Surfaces with Given Numerical Invariants.." Mathematische Annalen 268 (1984): 159-172. <http://eudml.org/doc/182912>.
@article{Miyaoka1984,
author = {Miyaoka, Yoichi},
journal = {Mathematische Annalen},
keywords = {Chern numbers of logarithmic cotangent bundle; quotient surface singularities; minimal resolution; bound for number of rational double points},
pages = {159-172},
title = {The Maximal Number of Quotient Singularities on Surfaces with Given Numerical Invariants.},
url = {http://eudml.org/doc/182912},
volume = {268},
year = {1984},
}
TY - JOUR
AU - Miyaoka, Yoichi
TI - The Maximal Number of Quotient Singularities on Surfaces with Given Numerical Invariants.
JO - Mathematische Annalen
PY - 1984
VL - 268
SP - 159
EP - 172
KW - Chern numbers of logarithmic cotangent bundle; quotient surface singularities; minimal resolution; bound for number of rational double points
UR - http://eudml.org/doc/182912
ER -
Citations in EuDML Documents
top- Oliver Labs, A septic with 99 real nodes
- Samuel Boissière, Alessandra Sarti, Counting lines on surfaces
- Karol Palka, Exceptional singular -homology planes
- S. Y. Orevkov, M. G. Zaidenberg, Some Estimates for Plane Cuspidal Curves
- Ciro Ciliberto, Rita Pardini, Francesca Tovena, Prym varieties and the canonical map of surfaces of general type
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.