Approximation theories for inertial manifolds
Mitchell Luskin; George R. Sell
- Volume: 23, Issue: 3, page 445-461
- ISSN: 0764-583X
Access Full Article
topHow to cite
topLuskin, Mitchell, and Sell, George R.. "Approximation theories for inertial manifolds." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 23.3 (1989): 445-461. <http://eudml.org/doc/193572>.
@article{Luskin1989,
author = {Luskin, Mitchell, Sell, George R.},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {inertial manifolds; Lyapunov-Perron method; modified Galerkin approximation},
language = {eng},
number = {3},
pages = {445-461},
publisher = {Dunod},
title = {Approximation theories for inertial manifolds},
url = {http://eudml.org/doc/193572},
volume = {23},
year = {1989},
}
TY - JOUR
AU - Luskin, Mitchell
AU - Sell, George R.
TI - Approximation theories for inertial manifolds
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 1989
PB - Dunod
VL - 23
IS - 3
SP - 445
EP - 461
LA - eng
KW - inertial manifolds; Lyapunov-Perron method; modified Galerkin approximation
UR - http://eudml.org/doc/193572
ER -
References
top- J. E. BILLOTTI, J. P. LASALLE (1971), Dissipative periodic processes, Bull. Amer.Math. Soc, 77, pp. 1082-1088. Zbl0274.34061MR284682
- S.-N. CHOW, K. LU and G. R. SELL (1988), Smoothness of inertial manifolds, Preprint. Zbl0767.58026MR1180685
- P. CONSTANTIN (1988), A construction of inertial manifolds, Preprint. Zbl0691.58040MR1034492
- P. CONSTANTIN, C. FOIAS, B. NICOLAENKO, R. TEMAM (1989), Integral manifolds and inertial manifolds for dissipative partial differential equations, Applied Mathematical Sciences, No 70, Springer-Verlag. Zbl0683.58002MR966192
- P. CONSTANTIN, C. FOIAS, B. NICOLAENKO, R. TEMAM (1989), Spectral barriers and inertial manifolds for dissipative partial differential equations, J Dynamics and Differential Equations, 1 (to appear). Zbl0701.35024MR1010960
- P. CONSTANTIN, C. FOIAS, R. TEMAM (1985), Attractors representing turbulent flows, Memoirs Amer. Math. Soc., 314. Zbl0567.35070MR776345
- C. R. DOERING, J. D. GIBBON, D. D. HOLM and B. NICOLAENKO (1988), Low dimensional behavior in the complex Ginzburg-Landau equation, Nonlinearity (to appear). Zbl0655.58021MR937004
- E. FABES, M. LUSKIN and G. R. SELL (1988), Construction of inertial manifolds by elliptic regularization, J. Differential Equations, to appear. Zbl0728.34047MR1091482
- C. FOIAS, M. S. JOLLY, I. G. KEVREKIDIS, G. R. SELL, E. S. TITI (1988), On the computation of inertial manifolds, Physics Letters A, Vol. 131, No 7, 8, pp. 433-436. MR972615
- C. FOIAS, B. NICOLAENKO, G. R. SELL, R. TEMAM (1988), Inertial manifolds for the Kuramoto Sivashinsky equation and an estimate of their lowest dimensions, J. Math. Pures Appl., 67, pp. 197-226. Zbl0694.35028MR964170
- C. FOIAS, G. R. SELL and R. TEMAM (1986), Inertial manifolds for nonlinear evolutionary equations, IMA Preprint No 234, March, 1986 Also in, J. Differential Equations, 73 (1988), pp. 309-353. Zbl0643.58004MR943945
- C. FOIAS, G. R. SELL and E. S. TITI (1988), Exponential tracking and approximation of inertial manifolds for dissipative nonlinear equations, J. Dynamics and Differential Equations, to appear. Zbl0692.35053MR1010966
- C. FOIAS and R. TEMAM (1979), Some analytic and geometric properties of the solutions of the Navier-Stokes equations, J. Math. Pures Appl., 58, pp. 339-368. Zbl0454.35073MR544257
- J.-M. GHIDAGLIA, Discrétisation en temps et variétés inertielles pour des équations d'évolution aux dérivées partielles non linéaires, Preprint. Zbl0666.35049
- J. K. HALE (1988), Asymptotic Behavior of Dissipative Systems, Amer. Math. Soc., Providence. Zbl0642.58013MR941371
- J. K. HALE and G. R. SELL (1988), Inertial manifolds for gradient Systems.
- D. HENRY (1981), Geometric Theory of Semilinear Parabolic Equations, Lecture Notes in Mathematics, No 840, Springer-Verlag, New York. Zbl0456.35001MR610244
- M. S. JOLLY (1988), Explicit construction of an inertial manifold for a reaction diffusion equation, J. Differential Equations (to appear). Zbl0691.35049MR992147
- D. A. KAMAEV (1981), Hopf's conjecture for a class of chemical kinetics equations, J. Soviet Math., 25, pp. 836-849. Zbl0531.35040
- M. LUSKIN and G. R. SELL (1988), Parabolic regularization and the construction of inertial manifolds, Preprint.
- J. MALLET-PARET (1976), Negatively invariant sets of compact maps and an extension of a theorem of Cartwright, J. Differential Equations, 22, pp. 331-348. Zbl0354.34072MR423399
- J. MALLET-PARET and G. R. SELL (1987), Inertial manifolds for reaction diffusion equations in higher space dimensions, IMA Preprint No. 331, June 1987, Also in, J. Amer. Math. Soc, 1, No. 4 (1988), pp. 805-866. Zbl0674.35049MR943276
- R. MANÉ (1977), Reduction of semilinear parabolic equations to finite dimensional C1 flows, Geometry and Topology, Lecture Notes in Math., vol. 597, Springer-Verlag, New York, pp.361-378. Zbl0412.35049MR451309
- R. MANÉ, (1981) On the dimension of the compact invariant sets of certain nonlinear maps, Lecture Notes in Math,, vol. 898, Springer-Verlag, New York, pp. 230-242. Zbl0544.58014MR654892
- M. MARION (1988), Inertial manifolds associated to partly dissipative reaction diffusion equations, J. Math. Anal. Appl. (to appear). Zbl0689.58039
- X. MORA (1983), Finite dimensional attracting manifolds in reaction diffusion equations, Contemporary Math., 17, pp. 353-360. Zbl0525.35046MR706109
- X. MORA and J. SOLÀ-MORALES (1987), Existence and non-existence of finite dimensional globally attracting invariant manifolds in semilinear damped wave equations, Dynamics of Infinite Dimensional Systems, Springer-Verlag, New York, pp. 187-210. Zbl0642.35062MR921912
- X. MORA and J. SOLÀ-MORALES (1988), The singular limit dynamics of semilinear damped wave equations, Preprint, Univ. Autònoma Barcelona. Zbl0699.35177MR992148
- B. NICOLAENKO, B. SCHEURER and R. TEMAM, (1987), Some global dynamical properties of a class of pattern formation equations, IMA Preprint No. 381. Zbl0691.35019MR976973
- A. PAZY (1983), Semigroups of Linear Operators and Applications to Partial Differential Equations, Applied Mathematical Sciences, Vol.44, Springer-Verlag, New York. Zbl0516.47023MR710486
- R. J. SACKER (1964), On invariant surfaces and bifurcation of periodic solutions of ordinary differential equations, NYU Preprint No. 333, October 1964.
- R. J. SACKER (1965), A new approach to the perturbation theory of invariant surfaces, Comm. Pure Appl. Math., 18, pp.717-732. Zbl0133.35501MR188566
- R. J. SACKER (1969), A perturbation theorem for invariant manifolds and Hölder continuity, J. Math. Mech., 18, pp.705-762. Zbl0218.34046MR239221
- G. R. SELL and Y. YOU (1988), Inertial manifolds : The non self adjoint case, Preprint. Zbl0760.34051
- M. TABOADA (1988), Finite dimensional asymptotic behavior for the Swift-Hohenberg model of convection, Nonlinear Analysis, TMA, to appear. Zbl0707.58019MR1028246
- R. TEMAM (1988), Infinite Dimensional Dynamical Systems in Mechanics and Physics, Springer-Verlag, New York. Zbl0662.35001MR953967
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.