An explicit version of Faltings' Product Theorem and an improvement of Roth's lemma
Acta Arithmetica (1995)
- Volume: 73, Issue: 3, page 215-248
- ISSN: 0065-1036
Access Full Article
topHow to cite
topJan-Hendrik Evertse. "An explicit version of Faltings' Product Theorem and an improvement of Roth's lemma." Acta Arithmetica 73.3 (1995): 215-248. <http://eudml.org/doc/206819>.
@article{Jan1995,
author = {Jan-Hendrik Evertse},
journal = {Acta Arithmetica},
keywords = {number of solutions of -unit equations; explicit version of the product theorem; Roth's lemma; approximation of algebraic numbers by rationals; quantitative subspace theorem; number of solutions of norm form equations},
language = {eng},
number = {3},
pages = {215-248},
title = {An explicit version of Faltings' Product Theorem and an improvement of Roth's lemma},
url = {http://eudml.org/doc/206819},
volume = {73},
year = {1995},
}
TY - JOUR
AU - Jan-Hendrik Evertse
TI - An explicit version of Faltings' Product Theorem and an improvement of Roth's lemma
JO - Acta Arithmetica
PY - 1995
VL - 73
IS - 3
SP - 215
EP - 248
LA - eng
KW - number of solutions of -unit equations; explicit version of the product theorem; Roth's lemma; approximation of algebraic numbers by rationals; quantitative subspace theorem; number of solutions of norm form equations
UR - http://eudml.org/doc/206819
ER -
References
top- [1] G. Faltings, Diophantine approximation on abelian varieties, Ann. of Math. 133 (1991), 549-576. Zbl0734.14007
- [2] G. Faltings and G. Wüstholz, Diophantine approximations on projective spaces, Invent. Math. 116 (1994), 109-138. Zbl0805.14011
- [3] R. Ferretti, An effective version of Faltings' Product Theorem, Forum Math., to appear. Zbl0860.11038
- [4] W. Fulton, Intersection Theory, Band 2, Ergeb. Math. Grenzgeb. (3), Springer, Berlin, 1984. Zbl0541.14005
- [5] H. Gillet and C. Soulé, Arithmetic intersection theory, Inst. Hautes Études Sci. Publ. Math. 72 (1990), 93-174. Zbl0741.14012
- [6] P. Griffiths and J. Harris, Principles of Algebraic Geometry, Wiley, New York, 1978. Zbl0408.14001
- [7] W. Gubler, Höhentheorie, Math. Ann. 298 (1994), 427-456.
- [8] R. Hartshorne, Algebraic Geometry, Springer, Berlin, 1977.
- [9] J. de Jong, Ample line bundles and intersection theory, in: Diophantine Approximation and Abelian Varieties, Proc. conf. Soesterberg, Netherlands, 1992, B. Edixhoven and J.-H. Evertse (eds.), Lecture Notes in Math. 1566, Springer, Berlin, 1993, 69-76. Zbl0811.14005
- [10] P. Philippon, Sur des hauteurs alternatives, I, Math. Ann. 289 (1991), 255-283. Zbl0726.14017
- [11] M. van der Put, The Product theorem, in: Diophantine Approximation and Abelian Varieties, Proc. conf. Soesterberg, Netherlands, 1992, B. Edixhoven and J.-H. Evertse (eds.), Lecture Notes in Math. 1566, Springer, Berlin, 1993, 77-82. Zbl0811.14006
- [12] K. F. Roth, Rational approximations to algebraic numbers, Mathematika 2 (1955), 1-20; Corrigendum, Mathematika 2 (1955), 168. Zbl0064.28501
- [13] H. P. Schlickewei, An explicit upper bound for the number of solutions of the S-unit equation, J. Reine Angew. Math. 406 (1990), 109-120. Zbl0693.10016
- [14] H. P. Schlickewei, The quantitative Subspace Theorem for number fields, Compositio Math. 82 (1992), 245-273. Zbl0751.11033
- [15] W. M. Schmidt, Norm form equations, Ann. of Math. 96 (1972), 526-551. Zbl0226.10024
- [16] W. M. Schmidt, The subspace theorem in diophantine approximations, Compositio Math. 69 (1989), 121-173. Zbl0683.10027
- [17] W. M. Schmidt, The number of solutions of norm form equations, Trans. Amer. Math. Soc. 317 (1990), 197-227. Zbl0693.10014
- [18] I. R. Shafarevich, Basic Algebraic Geometry, Springer, Berlin, 1977. Zbl0362.14001
- [19] C. Soulé, Géométrie d'Arakelov et théorie des nombres transcendants, in: Journées Arithmétiques de Luminy, 1989, G. Lachaud (ed.), Astérisque 198-199-200 (1991), 355-372.
- [20] G. Wüstholz, Multiplicity estimates on group varieties, Ann. of Math. 129 (1989), 471-500. Zbl0675.10024
- [21] O. Zariski and P. Samuel, Commutative Algebra, Vol. II, Springer, Berlin, 1960 Zbl0121.27801
Citations in EuDML Documents
top- Gaël Rémond, Sur le théorème du produit
- Jan-Hendrik Evertse, An improvement of the quantitative subspace theorem
- Helmut Locher, On the number of good approximations of algebraic numbers by algebraic numbers of bounded degree
- Yann Bugeaud, Quantitative versions of the Subspace Theorem and applications
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.