Weighted inequalities for monotone and concave functions

Hans Heinig; Lech Maligranda

Studia Mathematica (1995)

  • Volume: 116, Issue: 2, page 133-165
  • ISSN: 0039-3223

Abstract

top
Characterizations of weight functions are given for which integral inequalities of monotone and concave functions are satisfied. The constants in these inequalities are sharp and in the case of concave functions, constitute weighted forms of Favard-Berwald inequalities on finite and infinite intervals. Related inequalities, some of Hardy type, are also given.

How to cite

top

Heinig, Hans, and Maligranda, Lech. "Weighted inequalities for monotone and concave functions." Studia Mathematica 116.2 (1995): 133-165. <http://eudml.org/doc/216224>.

@article{Heinig1995,
abstract = {Characterizations of weight functions are given for which integral inequalities of monotone and concave functions are satisfied. The constants in these inequalities are sharp and in the case of concave functions, constitute weighted forms of Favard-Berwald inequalities on finite and infinite intervals. Related inequalities, some of Hardy type, are also given.},
author = {Heinig, Hans, Maligranda, Lech},
journal = {Studia Mathematica},
keywords = {weighted integral inequalities; weighted Hardy inequalities; weighted Hardy inequalities for monotone functions; weighted Favard-Berwald inequality; reverse Hölder inequality; concave functions; Berwald inequality; Favard inequality; Barnes inequality; monotonic functions; weighted inequalities},
language = {eng},
number = {2},
pages = {133-165},
title = {Weighted inequalities for monotone and concave functions},
url = {http://eudml.org/doc/216224},
volume = {116},
year = {1995},
}

TY - JOUR
AU - Heinig, Hans
AU - Maligranda, Lech
TI - Weighted inequalities for monotone and concave functions
JO - Studia Mathematica
PY - 1995
VL - 116
IS - 2
SP - 133
EP - 165
AB - Characterizations of weight functions are given for which integral inequalities of monotone and concave functions are satisfied. The constants in these inequalities are sharp and in the case of concave functions, constitute weighted forms of Favard-Berwald inequalities on finite and infinite intervals. Related inequalities, some of Hardy type, are also given.
LA - eng
KW - weighted integral inequalities; weighted Hardy inequalities; weighted Hardy inequalities for monotone functions; weighted Favard-Berwald inequality; reverse Hölder inequality; concave functions; Berwald inequality; Favard inequality; Barnes inequality; monotonic functions; weighted inequalities
UR - http://eudml.org/doc/216224
ER -

References

top
  1. [1] K. F. Andersen, Weighted generalized Hardy inequalities for nonincreasing functions, Canad. J. Math. 43 (1991), 1121-1135. Zbl0757.26018
  2. [2] M. Ariño and B. Muckenhoupt, Maximal functions on classical spaces and Hardy's inequality with weights for nonincreasing functions, Trans. Amer. Math. Soc. 320 (1990), 727-735. Zbl0716.42016
  3. [3] R. W. Barnard and J. Wells, Weighted inverse Hölder inequalities, J. Math. Anal. Appl. 147 (1990), 198-213. 
  4. [4] D. C. Barnes, Some complements of Hölder's inequality, ibid. 26 (1969), 82-87. Zbl0186.37302
  5. [5] E. F. Beckenbach and R. Bellman, Inequalities, Springer, New York, 1983. 
  6. [6] R. Bellman, Converses of Schwarz's inequality, Duke Math. J. 23 (1956), 429-434. Zbl0070.28503
  7. [7] J. Bergh, V. Burenkov and L. E. Persson, Best constants in reversed Hardy's inequalities for quasimonotone functions, Acta Sci. Math. (Szeged) 59 (1994), 221-239. Zbl0805.26008
  8. [8] L. Berwald, Verallgemeinerung eines Mittelwertsatzes von J. Favard, für positive konkave Funktionen, Acta Math. 79 (1947), 17-37. Zbl0029.11704
  9. [9] C. Borell, Inverse Hölder inequalities in one and several dimensions, J. Math. Anal. Appl. 41 (1973), 300-312. Zbl0249.26015
  10. [10] J. Bradley, Hardy inequalities with mixed norms, Canad. Math. Bull. 21 (1978), 405-408. Zbl0402.26006
  11. [11] H. Bückner, Untere Schranken für skalare Produkte von Vektoren und für analoge Integralausdrücke, Ann. Mat. Pura Appl. 28 (1949), 237-261. Zbl0036.17101
  12. [12] V. I. Burenkov, On the best constant in Hardy's inequality for 0 < p < 1, Trudy Mat. Inst. Steklov. 194 (1992), 58-62 (in Russian). 
  13. [13] R. J. Bushell and W. Okrasiński, Nonlinear Volterra equations with convolution kernel, J. London Math. Soc. 41 (1990), 503-510. Zbl0714.45006
  14. [14] A. P. Calderón and R. Scott, Sobolev type inequalities for p> 0, Studia Math. 62 (1978), 75-92. Zbl0399.46031
  15. [15] M. J. Carro and J. Soria, Weighted Lorentz spaces and the Hardy operator, J. Funct. Anal. 112 (1993), 480-494. Zbl0784.46022
  16. [16] M. J. Carro and J. Soria, Boundedness of some linear operators, Canad. J. Math. 45 (1993), 1155-1166. Zbl0798.42010
  17. [17] A. Clausing, Disconjugacy and integral inequalities, Trans. Amer. Math. Soc. 260 (1980), 293-307. Zbl0453.26009
  18. [18] J. Favard, Sur les valeurs moyennes, Bull. Sci. Math. 57 (1933), 54-64. 
  19. [19] P. Frank und G. Pick, Distanzschätzungen im Funktionenraum. I, Math. Ann. 76 (1915), 354-375. Zbl45.0456.01
  20. [20] A. García del Amo, On reverse Hardy's inequality, Collect. Math. 44 (1993), 115-123. Zbl0816.26006
  21. [21] G. Grűss, Über das Maximum des absoluten Betrages von ( 1 / ( b - a ) ) ʃ a b f ( x ) g ( x ) d x - ( 1 / ( b - a ) 2 ) ʃ a b f ( x ) d x ʃ a b g ( x ) d x , Math. Z. 39 (1935), 215-226. Zbl60.0189.02
  22. [22] G. H. Hardy, J. E. Littlewood and G. Pólya, Inequalities, Cambridge Univ. Press, 1952. 
  23. [23] H. Heinig and L. Maligranda, Chebyshev inequality in function spaces, Real Anal. Exchange 17 (1991-92), 211-247. Zbl0748.26011
  24. [24] H. Heinig and V. D. Stepanov, Weighted Hardy inequalities for increasing functions, Canad. J. Math. 45 (1993), 104-116. Zbl0796.26008
  25. [25] R. A. Hunt, On L(p, q) spaces, Enseign. Math. 12 (1966), 249-276. Zbl0181.40301
  26. [26] S. Karlin and W. J. Studden, Tchebycheff Systems: with Applications in Analysis and Statistics, Pure Appl. Math. 15, Wiley, New York, 1966. Zbl0153.38902
  27. [27] S. Lai, Weighted norm inequalities for general operators on monotone functions, Trans. Amer. Math. Soc. 340 (1993), 811-836. Zbl0819.47044
  28. [28] G. G. Lorentz, Some new functional spaces, Ann. of Math. 51 (1950), 37-55. Zbl0035.35602
  29. [29] L. Maligranda, J. Pečarić and L. E. Persson, Weighted Favard and Berwald inequalities, J. Math. Anal. Appl. 190 (1995), 248-262. Zbl0834.26012
  30. [30] V. M. Manakov, On the best constant in weighted inequalities for Riemann-Liouville integrals, Bull. London Math. Soc. 24 (1991), 442-448. Zbl0763.26006
  31. [31] W. G. Mazja [V. G. Maz'ya], Einbettungssätze für Sobolewsche Räume, Teil 1, Teubner, Leipzig, 1979. Zbl0429.46018
  32. [32] B. Muckenhoupt, Hardy's inequality with weights, Studia Math. 44 (1972), 31-38. Zbl0236.26015
  33. [33] E. Myasnikov, L. E. Persson and V. Stepanov, On the best constants in certain integral inequalities for monotone functions, Acta Sci. Math. (Szeged) 59 (1994), 613-624. Zbl0814.26011
  34. [34] C. J. Neugebauer, Weighted norm inequalities for averaging operators of monotone functions, Publ. Mat. 35 (1991), 429-447. Zbl0746.42014
  35. [35] R. O'Neil, Convolution operators and L(p,q) spaces, Duke Math. J. 30 (1963), 129-142. 
  36. [36] B. Opic and A. Kufner, Hardy-Type Inequalities, Pitman Res. Notes in Math. Ser. 219, Longman, 1990. 
  37. [37] M. Petschke, Extremalstrahlen konvexer Kegel und komplementäre Ungleichungen, Ph.D. Dissertation, Darmstadt, 1989, 106 pp. 
  38. [38] E. Sawyer, Weighted Lebesgue and Lorentz norm inequalities, Trans. Amer. Math. Soc. 281 (1984), 329-337. Zbl0538.47020
  39. [39] E. Sawyer, Boundedness of classical operators on classical Lorentz spaces, Studia Math. 96 (1990), 145-158. Zbl0705.42014
  40. [40] G. Sinnamon, Weighted Hardy and Opial-type inequalities, J. Math. Anal. Appl. 160 (1991), 434-445. Zbl0756.26011
  41. [41] E. Stein and G. Weiss, Introduction to Fourier Analysis on Euclidean Spaces, Princeton Univ. Press, Princeton, N.J., 1971. Zbl0232.42007
  42. [42] V. D. Stepanov, On boundedness of linear integral operators on the class of monotone functions, Sibirsk. Mat. Zh. 32 (1991), 222-224 (in Russian). 
  43. [43] V. D. Stepanov, Integral operators on the cone of monotone functions, J. London Math. Soc. 48 (1994), 465-487. Zbl0837.26011
  44. [44] V. D. Stepanov, Weighted Hardy's inequality for nonincreasing functions, Trans. Amer. Math. Soc. 338 (1993), 173-186. Zbl0786.26015
  45. [45] W. Walter and V. Weckesser, An integral inequality of convolution type, Aequationes Math. 46 (1993), 212-219. Zbl0787.26015
  46. [46] C.-L. Wang, An extension of a Bellman inequality, Utilitas Math. 8 (1975), 251-256. Zbl0324.49025
  47. [47] H.-T. Wang and S.-Y. Chen, Inverse Hölder inequalities with weight t α , J. Math. Anal. Appl. 176 (1993), 92-107. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.